
Operating Systems Lecture 10 page

The Problem of Concurrency

The problem is simply sharing resources.
• Several threads/processes running at the same time.
• Using the same resources - accessing the same data

structures/objects/devices
• Some resources can only be safely used by one thread

at a time.
• e.g. readers accessing shared data while a writer is

changing it,
• or writers changing a resource simultaneously

Race condition
• Any situation where the order of execution of threads

can cause different results.

Our programs must control the non-deterministic nature of
thread scheduling.

1 Operating Systems Lecture 10 page

Critical sections

An area of code in which we only want one
thread to be active at a time.

Providing this is known as mutual exclusion.

We need:
1. a way of locking threads out of critical sections
2. to guarantee threads are not kept waiting forever -

starvation

Starvation can be caused in different ways

• deadlock

• indefinite postponement - priority too low
or just unlucky

2

Operating Systems Lecture 10 page

Software solutions

We want something like this:
lock  
 critical section  
unlock

We have a boolean variable locked which is true if the
critical section is being used by a thread.  
Initially locked is false.

Attempt 1
Our first lock procedure:  

while locked
end  
locked = true

And the unlock:  
 locked = false

Locks like this are known as spin-locks or busy
waits.

What is wrong with this lock? At least 3
different things

3 Operating Systems Lecture 10 page

Another attempt - Peterson’s Solution
• This only works on shared memory multiprocessors if

instruction reordering can be turned off. Otherwise we
need hardware help with memory barriers.

• Two writes don't get interleaved at some minimum
write size, the hardware allows only one processor
access at a time.

• Java note: all primitives except double and long are
guaranteed to be written atomically

• Software solutions to locking critical regions require
this level of hardware assistance.

A two thread solution.
flag = [false, false]
both false initially
turn = 0

lock: performed by thread i; j is the other thread
 

 flag[i] = true  
 turn = j  
 while (flag[j] && turn == j)  
 end

unlock: performed by thread i
 

 flag[i] = false

4

Operating Systems Lecture 10 page

Bakery algorithm and hardware help

The previous method works but does not solve
the general case.

The bakery algorithm:
• Each thread is given a number indicating when it

requests the lock.
• These are not unique so some other method of

ordering e.g. pid is necessary as well.

Interrupt priority level

We could just raise the interrupt priority level
to stop any other process (which might
affect the area) from running while the lock
is being tested.

Disadvantages
• heavy-handed - not all processes at the current

interrupt priority level need to be stopped
• doesn't work efficiently on multiprocessors
• a message requesting the IPL change must be sent to

all processors, in some circumstances all other
processors must wait.

5 Operating Systems Lecture 10 page

Test and Set

Or equivalent atomic or indivisible instructions

they appear uninterruptible - once started no
other process can interfere until completed

testAndSet(lockVariable)

 returns the current value of the lockVariable  
 and sets the lockVariable to true

With this our lock can become  
while (testAndSet(locked))  
end

unlock:  
locked = false

The textbook has a definition in Figure 5.3.

6

Operating Systems Lecture 10 page

Getting out of the spin

Our lock is a spin lock or busy wait. A waiting
thread keeps running trying to get the
resource even though it is not available.  
It is also not fair.

Fairness

Without priorities:
• Each thread shouldn't have to wait while another

thread gets access to the resource more than once.
• Each thread should get access before any other thread

which requests it later.
 Otherwise indefinite postponement is possible.

• i.e. a queue would help.

But with priorities:
• Threads with higher priorities - should they get prior

access to resources?
Makes the priority mechanism more effective.
Increases the chance of indefinite postponement.
Priority mechanism can still work when selecting next

runnable thread.

7 Operating Systems Lecture 10 page

Priority inversion

When you have priorities on processes and a
locking mechanism you can get priority
inversion.

Lower priority processes with a lock can force
higher priority processes to wait. But
because they are low priority they may not
run very frequently.

Particularly important in real-time systems.

Solved with priority inheritance – when a
higher priority process blocks waiting for a
resource the process with the resource is
temporarily given the priority of the
blocked process. The high priority process
will now only wait during the critical
section.

8

Operating Systems Lecture 10 page

Placing in a queue

When a thread must wait we put it on a queue and stop
it running. This solves two problems:
1. fairness
2. wasting processor cycles

Other advantages:
• possibly frees pages for other processes
• we know how many threads are waiting for this resource

It is subtle, however. What could go wrong with the
following? (the lock and unlock are on the next
page)

def suspend
 enqueue(thisThread) # put on the queue
 reschedule # start another thread
end

- like yield but the current thread is now waiting
rather than runnable

def awaken
 first = dequeue # head of the queue
 makeRunnable(first) # to run eventually
end

9 Operating Systems Lecture 10 page

Placing in a queue (cont.)

and our lock and unlock are:
def lock
 if (testAndSet(locked))
 suspend
end

def unlock
 if (!emptyQueue) # something in the

 # queue
 awaken
 else
 locked = false
end

10

Operating Systems Lecture 10 page

Semaphores

Edsger Dijkstra (1965)

A semaphore is an integer count, two indivisible
(atomic) operations and an initialization.

S a semaphore - the indivisible operations are:

V(S):  
 S = S + 1

P(S):  
 wait until S > 0  
 S = S - 1

The count tells how many of a certain resource are
available.

Binary semaphores

The semaphore is initialised to 1.

To get a resource the thread calls P on the semaphore.  
To return the resource the thread calls V.

11 Operating Systems Lecture 10 page

Implementing semaphores

Rather than calling the operations P and V we
will call them wait and signal.

signal(S):  
 if anything waiting on S then  
 start the first process on the S queue  
 else  
 S = S + 1

wait(S):  
 if S < 1 then  
 put this process on the S queue  
 else  
 S = S - 1

another common alternative is:

signal(S):  
 S = S + 1  
 if S < 1 then  
 start the first process on the S queue

wait(S):  
 S = S - 1  
 if S < 0 then  
 put this process on the S queue

12

Operating Systems Lecture 10 page

Producer/Consumer problem

A thread producing data, a thread consuming
the data.
• We don't want to lose any data.
• We don't want to use any data more than once.
require 'semaphore'

number_received = Semaphore.new(?)
number_deposited = Semaphore.new(?)

$buffer = 0

producer = Thread.new do
 loop do
 next_result = rand
 number_received.wait
 $buffer = next_result
 number_deposited.signal
 end
end

consumer = Thread.new do
 loop do
 number_deposited.wait
 next_result = $buffer
 number_received.signal
 puts next_result
 end
end

consumer.join

What values for the “?”?

13 Operating Systems Lecture 10 page

Before next time

Read from the textbook
5.7.2 The Readers-Writers Problem
5.8 Monitors
5.9.1 Synchronization in Windows
5.9.2 Synchronization in Linux

14

