
Operating Systems Lecture 06 page

Process Control Blocks

PCBs
Where the OS can find all the information it needs to know

about a process.
• memory
• open streams/files
• devices, including abstract ones like windows
• links to condition handlers (signals)
• processor registers (single thread)
• process identification
• process state - including waiting information
• priority
• owner
• which processor
• links to other processes (parent, children)
• process group
• resource limits/usage
• access rights
• process result - may be waited for by another process

Doesn't have to be kept together  
Different information is required at different times

UNIX for example has two separate places in memory with
this information. One of them is in the kernel the other is
in user space. Windows does the same.

Operating Systems Lecture 06 page

Linux PCBs

In the same order as the previous slide.

/* memory management info */  
 struct mm_struct *mm;

/* open file information */  
 struct files_struct *files;

/* tss for this task */  
 struct thread_struct tss;

 int pid;
 volatile long state; /* -1 unrunnable, 0

runnable, >0 stopped */
 long priority;
 unsigned short uid,euid,suid,fsuid;
#ifdef __SMP__  

 int processor;  
#endif

struct task_struct *p_opptr, *p_pptr,
*p_cptr, *p_ysptr, *p_osptr;

/* limits */  
 struct rlimit rlim[RLIM_NLIMITS];  
 long utime, stime, cutime, cstime,
start_time;

2

Operating Systems Lecture 06 page

UNIX process parts

The PCB is the box labelled process structure
but the user structure maintains some of
the information as well (only required when
the process is resident).

3 Operating Systems Lecture 06 page

Windows NT PCBs

Information is scattered in a variety of objects.

Executive Process Block (EPROCESS)
includes
• KPROCESS and PEB
• pid and ppid (the ppid is not visible to Win32)
• file name of program
• window station - the screen or remote terminal
• exit status
• create and exit times
• links to next process
• memory quotas
• memory management info
• Ports for exceptions and debugging
• Security information

4

Operating Systems Lecture 06 page

NT PCB (cont.)

Kernel Process Block (KPROCESS) includes
info the kernel needs to schedule threads
• Kernel and user times.
• Pointers to threads.
• Priority information.
• Process state
• Processor affinity

Process Environment Block (PEB) includes
info which needs to be writable in user
mode
• image info: base address, version numbers, module list
• heaps (blocks of one or more pages)

5 Operating Systems Lecture 06 page

Process table and Thread structures

Process Table
A collection of PCBs
Commonly an array of pointers to PCBs

Thread structures (like PCBs)
• private memory (runtime stack) and static storage for

local variables
• processor registers
• thread identification
• thread state - including waiting information
• priority
• processor
• associated process
• thread group
• thread result - maybe waited for by another thread

6

Operating Systems Lecture 06 page

Process states

At its simplest a process is either running or it
is not.

Java thread states

7 Operating Systems Lecture 06 page

Being created

Different methods of creating processes

• create process system call - takes a program
name or a stream with the program data

• copy process system call - a strange way of
doing it but is now very widespread thanks
to UNIX

• create a new terminal session

8

Operating Systems Lecture 06 page

Being created (cont.)

Whichever way
• find a spare (or create a new) PCB (what if there isn't

one?)
• mark it "being created"
• generate a unique identifier
• get some memory (what if there isn't any?) or
• at least fill in the page table entries
• set up PCB fields with initial values
• set priority, resource limits
• when all set up change the state to "runnable"
• this could be done by inserting into a queue of

runnable processes

What about other resources?

Some OSs carefully allocate resources before a
process runs  
(this prevents deadlock later)

Others leave these to the process to collect as it
runs

9 Operating Systems Lecture 06 page

fork

The UNIX (originally) fork call duplicates the
currently running process.
• parent process - the one which made the call
• child process - the new one

Traditionally memory was duplicated - the
code was shared even from earliest days.
• Share open files as well.
• Open file information blocks will have the count of

processes using them increased by one.
• And shared memory regions.
• Fork returns 0 in the child process and the child's pid

in the parent.

10

Operating Systems Lecture 06 page

Test

How many times is the ps command executed?

import os

i = 0
while i < 2:
 os.fork()
 os.system('ps -o pid,ppid,comm,stat')
 i += 1

Usually calls to fork are followed by calls to
exec in the child process.

if (os.fork() == 0)  
 os.execl("nextprog", ...)

This keeps the process the same (what does that
mean?) but changes the program.

11 Operating Systems Lecture 06 page

exec

• checks to see if the file is executable

• saves any parameters in some system
memory

• releases currently held memory

• loads the program

• moves the saved parameters into the stack
space of the new program

• ready to run again

Fork used to copy the data memory of the
process.  
If the child is going to do an exec this is a
waste of effort.  
Particularly bad with virtual memory.

12

Operating Systems Lecture 06 page

Two solutions

1. copy on write
No copy is made at first.
The data pages of the parent process are set to read only.
If a write occurs the resulting exception makes a copy of the

page for the other process – both copies are then marked
writable.

1. vfork
Trust the programmers to know what they are doing.

With vfork - parent process blocks until child
finishes or calls exec.

How many calls to ps are created by the earlier code if we
could use vfork?

Copy on write is the predominant strategy.
It is used in many situations to improve throughput.

13 Operating Systems Lecture 06 page

NT process creation

• open .exe file and create a section object (actually
quite complex because of the different subsystems)

• create NT process object
• Set up EPROCESS block
• create initial address space
• create KPROCESS block
• finish setting up address space - including mapping the

section object
• adds process block to the end of the list of active

processes
• set up PEB
• creates initial thread (initially suspended)
• Win32 subsystem is notified about the new process

(includes the arrow and hourglass cursor)
• initial thread starts
• goes through more startup in the context of the new

process - includes loading and initializing DLLs

14

Operating Systems Lecture 06 page

Before next time

Read from the textbook
3.2 Process Scheduling
3.3 Operations on Processes

15

