
Operating Systems Lecture 03 page

Scheduling

To maximize the use of the computing
machinery the OS needed to know:

• what and how many devices a process
would use

• what and how many files a process would
use

• how much output it was likely to produce

• how long it was expected to take

Some of this information was submitted on the
control cards, e.g. the files to be used.  
Some of this information was inferred by
the job queue the job was submitted on.  
Different queues meant different expected
resource requirements. Jobs on different
queues were scheduled differently.  

1 Operating Systems Lecture 03 page

Scheduling (cont.)

This system was used at the University of Auckland.

The user could specify limits up to the maximum
allowed for a queue. If no limit was specified the
default for that queue was applied.

• Queue 3 was the default. It was designed for jobs
which were quite small and which would move
through the system smoothly. They were not allowed
to use magnetic or paper tape (hence they did not
require operator intervention).

• Queue 2 jobs were allowed to use two tapes (input or
output).

• Most large jobs went through Queue 1.
• Queue 4 was for very large jobs and these jobs were

scheduled manually.

To stop users abusing the system, they were limited to
two jobs in any one queue at a time.

2

Operating Systems Lecture 03 page

Power to the people

Circa 1970s.  
Hardware was cheaper. This meant
two things:
• Computer systems could afford to be nicer to users.
• People were now the expensive bit, we wanted to

make them more productive.

Give them all a console
• CRT VDUs, early versions used teletypewriters.
• The early ones still looked like printers.
• Text was displayed on the screen top to bottom / left to

right.
• You couldn't easily edit in place.
• Flushing the whole screen at 2400 baud was a bit

obvious.
• Side effect - people do different things with computers
• Shock, horror! Word processing, email

3 Operating Systems Lecture 03 page

Time-sharing systems

People want good response
• waiting over 1/5 of a second is noticeable
• waiting over 5 seconds is unacceptable

People working at the machine are
unpredictable
• they want to use files and devices at any time
• it is very hard for the OS to work out what processes

will be compute intensive or IO intensive
• more processes are active in the system

there is usually at least one process to deal with commands for
each user, plus the normal work they requested
• the terminal is used for the entering of data and

programs as well as JCL type commands
• because people are slow peripherals many more had to

be on-line than jobs needed to be running on a batch
system to get through the same amount of work

• users would also communicate with each other - early
email systems and talk programs

4

Operating Systems Lecture 03 page

Time-sharing systems (cont.)

Devices and the CPU can’t be used to capacity
otherwise the response time is too long.

So there has to be slack in the system.
•look at the processor usage on your Windows PC using
System monitor or Task Manager
•or run top on UNIX

5 Operating Systems Lecture 03 page

Time-sharing changes

Over-demand for resources can happen easily
(but we hope occasionally).

High-level scheduling decisions are made by
the users.

Security is more of a problem
Hacking on a batch system was difficult.
The system must have some authentication process.

More user administration.
Profiles, defaults, resource limits
Different types of users - System administrators with more

rights than “ordinary” users.

6

Operating Systems Lecture 03 page

Batch system remnants

Ways of running processes at specific times
without user intervention e.g. crontab,
at and Task Scheduler.

Until the arrival of cheap graphics terminals -
the terminal still looked very like a card
reader. e.g the vt52.

Command files or shell scripts - very like the
control cards of a job control language.

7 Operating Systems Lecture 03 page

Desktop computers

Circa 1980s

Started with resident monitor systems.
TRS-DOS
Apple DOS
MS-DOS
MacOS

File systems
Simple single-level

There was no need for security.
Only one user.
No hard disks.

Only one program ran at a time.
People usually work with one program at a time.

Gradual need for multiprogramming
Print spooling
TSRs
Mac Switcher

8

Operating Systems Lecture 03 page

Personal computers (cont.)

Xerox (late 70s early 80s) had done some
pioneering work on making computers
easier to use.  
This was originally on time-sharing and
networked workstations.

• needed high definition graphics screens

• desktop metaphor - make the computer look
like something else (even though files were
called files well before this)

Macintosh (now officially called “Mac”) took
this and popularized a cut-down version.  
MS-DOS users laughed scornfully until
1995.

9 Operating Systems Lecture 03 page

Personal computers (cont.)

Eventually personal computers became as
powerful as “real computers”.

Time-sharing OSs could fit on the desktop.
UNIX was the main example.

Fully featured PC operating systems were
developed with

virtual memory
multiprogramming
sophisticated file systems
networking
multi-user support
e.g. MacOS X, Windows 8, Linux, FreeBSD

10

Operating Systems Lecture 03 page

Networks

1980s on

New problems
security
providing transparent access to resources
developing protocols

Network Operating System
provides file sharing
provides communication scheme
runs independently from other computers on the network

Distributed Operating System
less autonomy between computers
gives the impression there is a single operating system

controlling the network.

Both are known as
loosely coupled as opposed to tightly coupled systems

11 Operating Systems Lecture 03 page

Multiprocessor systems

Tightly coupled system – processors share
memory and a clock; communication
usually takes place through the shared
memory.

Almost all computers now count as tightly coupled systems.

Advantages of parallel systems
Increased throughput
Economical for the increase in performance
Increased reliability
graceful degradation
fail-soft systems (shut down non-essentials)

Symmetric multiprocessing (SMP)
Each processor runs an identical copy of the operating system.
Many processes can run at once without performance

deterioration.
Most modern operating systems support SMP
- essential now that we have multiple core CPUs

Asymmetric multiprocessing
Each processor is assigned a specific task; master processor

schedules and allocates work to slave processors.
More common in extremely large systems

12

Operating Systems Lecture 03 page

Real-time systems

A completely different thread of OS
development.

Real-time systems have varying levels of
timing constraints.

Hard real-time – must satisfy requests within
definite time periods or the system fails.

e.g. robotics, air traffic control, nuclear power plants

Soft real-time – it doesn’t matter too much if a
time constraint is not met exactly.

e.g. Multi-media software, telephone system

Most modern OSs can handle some sort of soft
real-time control.

Hard real-time control systems have to be
specially designed.

13 Operating Systems Lecture 03 page

Pocket computers and smartphones
PalmOS (before WebOS) - small memory and slow

processors. The OS had to be very efficient in
order to get reasonable performance. No memory
protection, no virtual memory.

Android – Based on Linux, programming
applications is done in Java to Android specific
APIs. A cut down version of Linux for embedded
devices.

iOS - Based on MacOS X. Virtual memory, includes
paging for code but not for data (why?)

SymbianOS – also true memory protection.

Other problems of size and battery consumption.
GUI, amount of RAM that can be kept valid.

14

Operating Systems Lecture 03 page

Before the next lecture

Read textbook sections

Chapter 16 Virtual Machines

15

