
COMPSCI 320SC 2019 Midterm Test

University ID:

Student Name:

Student Signature:

Time Finished:

Attempt all questions. (Use of calculators is NOT permitted.)

Put the answers in the space below the questions.

Write clearly and show all your work !

Marks for each question are shown just before each answer area.

This 60 minute test is worth 10% of your final grade for the course.

Good luck!

Question #: 1 2 3 Total

Possible marks: 10 10 10 30

Awarded marks:

1

Student Name: Student ID: 2

1. Basic Analysis [10 marks]

(a) Show that lnn√
n

is O(
√
n). (3 marks)

Using limit rule: limn→∞
lnn√
n
/
√
n = limn→∞

lnn
n = 0

(b) Prove that if f1 is Ω(g1) and f2 is Ω(g2), then f1 + f2 is Ω(g1 + g2). (3 marks)

There exists c1 > 0 and n1 > 0 such that 0 ≤ f1(n) ≥ c1 · g1(n) for all n ≥ n1.

There exists c2 > 0 and n2 > 0 such that 0 ≤ f2(n) ≥ c2 · g2(n) for all n ≥ n2.

Then, f1(n) + f2(n) ≥ min(c1, c2)(g1(n) + g2(n)) for all n ≥ max(n1, n2).

(c) Show that if f(n) =
(
n
2

)n
then f(n) = 2Θ(n logn). (4 marks)

Since log2 f(n) = n log2
n
2 = n(log2 n− 1) = Θ(n log n), we have

2log2 f(n) = f(n) = 2Θ(n logn).

Student Name: Student ID: 3

2. Divide and Conquer [10 marks]

(a) Master theorem: Consider the following “divide-and-conquer” function:

function printer(int n)

for i = 1 to n do

for j = i + 1 to n do

print CS320

end for

end for

if n > 0 then

for i = 1 to 4 do

printer(bn/2c)
end for

end if

Let T (n) denote the number of CS320 generated by a call of printer(n).

i. Provide a recurrence equation for T (n). (3 marks)

T (n) =

{
0, if n ≤ 1

4T (bn/2c) + n(n− 1)/2, if n > 1

The second term can be replaced by Θ(n2) or O(n2).

ii. Solve the recurrence asymptotically for general n. (2 marks)

Apply the master recurrence theorem with a = 4, b = 2, c = 2, we have T (n) = Θ(n2 log n)

or O(n2 log n).

You may want to make use of the following master recurrence theorem: Assume T (n) =

aT (n/b)+g(n), where g(n) is O(nc), is the total time for a divide and conquer algorithm.

Then:

T (n) =


O(nc), if a < bc

O(nc log n), if a = bc

O(nlogb a), if a > bc

Student Name: Student ID: 4

(b) Finding the peak item in array

A peak item in an array is the item that is greater than its neighbors. If there are more

than one peak item, simply return one of them.

Input: [1, 5, 3, 2, 4, 0]

Output: 4

Input: [1, 2, 3, 4, 5, 6]

Output: 6

Input: [7, 6, 5, 4, 3, 2]

Output: 7

Describe a divide-and-conquer algorithm that solves this problem in O(log n) time where

n is the size of the array. (5 marks)

We simulate the binary search method by first retrieving the mid item.

If it is greater than both of its neighbors, return it (2 marks).

If the left (or right) neighbor is greater than the mid item, recursively find the peak on the

left (or right) part of the array (2 marks).

In the worst-case data (example 2 and 3), we need O(log n) time to return the peak item

(1 mark).

We note that if there is more than one peak element, this solution will return one of them.

Student Name: Student ID: 5

3. Greedy Algorithms [10 marks]

(a) Show how the greedy algorithm for making change gives minimum number of coins for

$7.95 using only New Zealand coinage (200, 100, 50, 20, 10 and 5 cents). Explain your

answer. . (3 marks)

795 - 200 - 200 - 200 - 100 - 50 - 20 - 20 - 5 = 0 implies 8 coins

(b) List and briefly describe the three methods presented in class for proving correctness of

greedy algorithms. (3 marks)

1. Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its

solution is at least as good as any other algorithms.

2. Structural. Discover a simple structural bound asserting that every possible solution

must have a certain value. Then show that your algorithm always achieves this bound.

3. Exchange argument. Gradually transform any solution to the one found by the greedy

algorithm without hurting its quality.

(c) Consider the following simple greedy algorithm for properly coloring the vertices of a

graph. [Recall that a graph is properly colored if we can assign colors to vertices such

that adjacent vertices have different colors.]

function GreedyColor(Graph G = (V,E))

Sort V by their degree in non-increasing order (e.g. largest to smallest)

ColorsAvail = {1, 2, . . . , |V |}; ColorsUsed = {}
for each v ∈ V (preserving sorted order) do

Let c be smallest positive integer in ColorsAvail not used for a neighbor of v

Color[v] = c

ColorsUsed = ColorsUsed ∪ {c}
return Color, |ColorsUsed|

Show with a small counter-example that this greedy algorithm does not always give the

minimum number of colors. (Justify your answer by showing a valid smaller proper

coloring.) (4 marks)

A simple counter-example is the following graph in adjacency lists format.

0: 2 6 7 (colored 1)

1: 3 4 5 (colored 1)

2: 0 3 (colored 2)

3: 1 2 (colored 3)

4: 1 (colored 2)

5: 1 (colored 2)

6: 0 (colored 2)

7: 0 (colored 2)

However, this is a tree (hence bipartite/2-colorable).

