THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2015

Campus: City

COMPUTER SCIENCE

Algorithm Design and Analysis
 (Time allowed: Fifty minutes)

NOTE: Attempt all questions. Put the answers in the space below the questions. Write clearly! You may continue your answers onto the "overflow" pages provided at the end of the test, if necessary.
Use of calculators is NOT permitted.
This test is worth 10% of your final grade for the course.

Student Name: \qquad Student ID: \qquad

1. Consider an instance of the Stable Matching Problem in which the preferences of the blue nodes B_{1}, B_{2}, B_{3} are respectively $P_{1}>P_{2}>P_{3}, P_{2}>P_{3}>P_{1}, P_{3}>P_{1}>P_{2}$, while the preferences of the pink nodes P_{1}, P_{2}, P_{3} are respectively $B_{3}>B_{2}>B_{1}, B_{2}>B_{1}>B_{3}, B_{1}>B_{3}>B_{2}$.
(i) Show the execution of the Gale-Shapley algorithm (with blue nodes as proposers). List every engagement made and every engagement broken, and the final output.
B_{1} engages $P_{1} ; B_{2}$ engages $P_{2} ; B_{3}$ proposes $P_{1} ; P_{1}$ breaks engagement; P_{1} engages $B_{3} ; B_{1}$ engages P_{3}. Final assignment has $\left(B_{1}, P_{3}\right),\left(B_{2}, P_{2}\right),\left(B_{3}, P_{1}\right)$.
(ii) Does there exist a solution to the problem that has each B_{i} matched with P_{i} ? Explain why or why not.
[3 marks]
\square
Yes. In each pair at least one gets its top choice so has no incentive to change, hence this is a stable assignment.
(iii) Explain why in any solution, B_{2} must be matched with P_{2}.
[2 marks]

Each is the other's top choice so if paired in any other way they would form a blocking pair.

Student Name: \qquad Student ID: \qquad
2. Suppose that I have a new algorithm for multiplication of matrices that works by dividing each of the $n \times n$ matrices x and y into 3 parts of as equal size as possible, and computing the product $x y$ by means of 23 multiplications of the parts, plus 147 matrix additions and subtractions.
(i) Write down a recurrence describing the worst-case running time of this algorithm on an instance of size n.
[5 marks]
$T(n) \leq 23 T(n / 3)+g(n)$ where g takes the overhead into account. Note that the size of the problem we take to be n, so the 9 submatrices each have size about $n / 3$. If \leq is replaced by $=$, it is probably OK (no marks lost). Here $n / 3$ makes sense only when n is a multiple of 3 . Since g is increasing, we could write $T(\lceil n / 3\rceil)$ instead. I am not worrying much about these minor points, since they turn out not to affect the asymptotic solution. Nor is the initial condition very important.
(ii) Is this algorithm likely to be faster than the standard matrix multiplication algorithm when used on large inputs? Give full explanation.

Yes. According to the "master theorem" covered in class, the divide and conquer recurrence has solution in $\Theta\left(n^{\log _{3} 23}\right)$. This is because the overhead is of order n^{2}. In order to compute the matrix product in the standard way, we require $\Theta(n)$ operations to compute each entry of the product, and hence $\Theta\left(n^{3}\right)=\Theta\left(n^{\log _{3} 27}\right)$ overall and this is asymptotically worse than the running time of the new algorithm.

Student Name: \qquad Student ID: \qquad
3. Recall that an Egyptian fraction is a rational number of the form $1 / n$, where n is a positive integer. Consider the problem of writing a positive rational number less than 1 as a sum of different Egyptian fractions. For example, $2 / 3=1 / 2+1 / 6$ is a valid representation, but $2 / 3=1 / 3+1 / 3$ is not valid.
(i) State a greedy algorithm for this problem. Show that it always finds a solution to the problem. You must show why the algorithm terminates.
[5 marks]
\square
If x is the first denominator of the Egyptian fraction chosen for m / n, then we have $x-1<n / m \leq x$. Thus after one iteration we have $m / n-1 / x=$ $(m x-n) /(n x)$ and the numerator is less than m by above. So the numerators form a strictly decreasing sequence of natural numbers, which terminates. But this algorithm can terminate if and only if we reach 0 .
(ii) Carry out the algorithm on the rational number 14/15.
\square
We get $14 / 15=1 / 2+1 / 3+1 / 10$ by repeatedly choosing the largest Egyptian fraction we can.
(iii) Show that the greedy algorithm does not always find the optimal solution, if we seek to minimize the number of summands. Hint: consider numbers of the form $(a+1) / n a$. [2 marks]
$8 / 77=7 / 77+1 / 77=1 / 11+1 / 77$ from hint; however the greedy algorithm gives $8 / 77=1 / 10+3 / 770$ and hence will yield a longer expansion since $3 / 770$ is not in reduced form.

Student Name:
Student ID:

OVERFLOW PAGE

Student Name:
Student ID:

OVERFLOW PAGE

