THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2009
 Campus: Tamaki

\qquad

COMPUTER SCIENCE

Data Communications Fundamentals

(Time allowed: $\mathbf{4 5}$ minutes)

NOTE:

- Attempt all questions in the space provided.

Extra space for answers is available on page 6.

- This mid-semester test will contribute 15% to your overall course mark. Indicated marks are out of a total of 100 marks
- If you require additional information in order to answer a question, you should make a reasonable assumption as required for your answer, and you should explain your assumption on your script.

Surname:
Forenames:

Student ID: \qquad

Question	Possible marks	Awarded marks
Codes	45	
Signal-to-noise ratio	20	
Compression	35	
Total	100	

Student ID: \qquad

Codes
a) What is a code?

A code is the assignment of a unique string of characters (a codeword) to each character in an alphabet.
b) What is a prefix code? What is a uniquely decodable code?

A prefix code (or prefix-free code) is a code in which no codeword is a proper prefix of another codeword.
A code is uniquely decodable if the encoding of every possible cleartext using that code is unique.
c) Give an example of a uniquely decodable code which is not a prefix code. Justify your answer.

The code $\{10,1011\}$ is uniquely decodable because any finite sequence of codewords can be uniquely split into 10 and 1011. It is not a prefix code (10 is a proper prefix of 1011).
d) Is ASCII a prefix code? Justify your answer.

ASCII is a prefix code because each codeword has a fixed length.
e) State Kraft's theorem.
[5 marks]

A prefix code exists for codewords lengths $l_{1}, l_{2}, \ldots, l_{N}$ if and only if

$$
2^{-l_{1}}+2^{-l_{2}}+\cdots+2^{-l_{N}} \leq 1
$$

Student ID: \qquad
f) Does there exist a prefix binary code whose codewords lengths are exactly: 100, 2, 1, 2? Justify your answer.
$2^{-100}+2^{-2}+2^{-1}+2^{-2}=2^{-100}+\frac{1}{4}+\frac{1}{2}+\frac{1}{4}=2^{-100}+1>1$, so the numbers
$100,2,1,2$ do not satisfy the inequality in Kraft's theorem, hence there is no prefix
binary code whose codewords lengths are exactly: $100,2,1,2$.

Signal-to-noise ratio a) What is the signal-to-noise ratio?

The signal-to-noise ratio is the ratio S / N, where S is the signal power and N is the noise power.
b) Define the bit rate and the bandwidth.

The bit rate describes a medium's capacity. The range of frequencies a medium can pass is called bandwidth.
c) In a noisy transmission, what is the relation between bite rate and signal-to-noise ratio?
[10 marks]

In a noisy transmission, bit rate $=$ bandwidth $\times \log _{2}(1+S / N)$.

Student ID: \qquad

Compression Assume that you wish to compress a large file consisting entirely of strings of lower-case letters (26), the digits $0,1,2,3,4,5,6,7,8,9$ and the symbols $\$, \#$.
a) What is a fix-length code?

A fix-length code is a code using codewords of a given fixed length.
b) How many bits do you need to store a file with n characters using an 8 -bit (fix-length) code? [5 marks]

The code uses 8 bits to code each character, so if the file has n characters each stored as an 8 -bit code you need $8 n$ bits.
c) Can you reduce the size of the fix-length code for the file assumed above? Present your solution and calculate the size of the compressed file. How much size reduction (percentage) have you obtained?

The file uses $26+10+2=38$ characters, so with a 6 -bit code one can code $2^{6}=64>38$ characters. A file with n characters will be coded by $6 n$ bits, so the size reduction is (from $8 n$ to $6 n$) 25%.
d) Can you compress the file with the Baudot code? Justify your answer.

Yes, it is possible because $38<64=2^{5} \times 2$ which is the maximal number of characters we can code with a 5-bit code using the extra information 11111 (shift down) and 11011 (shift up).

Student ID: \qquad
e) The Baudot code is a 5-bit code. How can you compress the file with only a 5-bit code?

The Baudot code is a 5-bit code using the special extra information 11111 (shift down) and 11011 (shift up).

Student ID: \qquad

Student ID:

