THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2008
Campus: Tamaki

COMPUTER SCIENCE

Data Communications Fundamentals

(Time allowed: TWO hours)

NOTE:

- Attempt all questions. Calculators are NOT permitted.
- Write short answers in the space provided
(extra space for answers is available on pages 18 to 20).
- No marks will be awarded if you merely state a "yes" or "no" answer. To obtain full credit, your script must clearly explain why your answer is correct.
- If you require additional information in order to answer a question, you should make a reasonable assumption as required for your answer, and you should explain your assumption on your script.

Surname: \qquad Forenames: \qquad

Student ID: \qquad

Departmental Use Only					
Question	Marks allocated	Marks gained	Question	Marks allocated	Marks gained
1	8		6	10	
2	10		7	10	
3	10		8	10	
4	12		9	12	
5	10		10	8	
Total			Total	100	

Student ID:

1. Compression
[8 marks]
Assume that you wish to email a large file consisting entirely of strings of lower-case letters (26), plus the digits $0,1,2,3,4,5,6,7,8,9$.
(a) How many bits do you need to store a file with n characters using an 8-bit ASCII code?
[2 marks]
\square
(b) Can you do it better? Present your solution and calculate the size of the compressed file. How much size reduction (percentage) have you obtained?
\square
(c) What is the maximum number of characters one can code with your solution presented at (b)?
\square

Student ID:
2. Parity check
(a) What is a two-dimensional parity check?
\square
(b) Calculate and write in the two-dimensional parity check for the data shown below, and then write the sequence of bits that are transmitted.
$\left.\begin{array}{|lllllllll|}\hline & & & & & & & & \\ \\ & & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$

Student ID: \qquad
(c) Calculate the increase in size - in absolute value and percentage - of the transmitted data using two-dimensional parity check.
\square

3. Protocol Layers

(a) Explain in one or two sentences why protocols are designed in layers.

(b) Give two examples of an upper layer protocol and state which lower layer is below each one.
[2 marks]
\square

Student ID: \qquad
(d) Which layers use logical addresses recognised by software?

(e) When data packets are sent through a network, how does the receiving system distinguish the various protocol layers in the incoming packet?
\square

Student ID: \qquad
4. Security
(a) What is the main difference between a normal coding scheme and a cryptographic code?
\square
(b) What is the main difference between a public key system and a symmetric key system? [2 marks]
\square

For parts c) to f), consider a security protocol in which three messages are exchanged:

M1. Client A to server B: Eb("user Alice", a)
M2. Server B to client A: Ea("user Alice", Tb)
M3. Client A to server B: Eb("'user Alice", Tb, data)
where $\mathbf{E a}, \mathbf{E b}$ mean RSA encryption with the public keys of A and B respectively, \mathbf{a} is A's public key, and Tb is the time on B's clock when it receives M1. Assume that B's public key is known to everybody. Remember to explain your answers.

Student ID: \qquad
(c) After the three messages, does B know that client A is definitely user Alice?
\square
(d) After the three messages, does A know that server B is genuine?
[2 marks]

(e) If a third system X has intercepted M1 and M2, can it read the data in M3?

(f) If X sends a bogus message similar to M3, can B detect that it is bogus?

Student ID: \qquad
\square
(b) Consider a stop-and-wait protocol designed for use over a $10 \mathrm{Mbit} / \mathrm{s}$ LAN, with a maximum distance of 1 km between stations. The travel time for 1 km is 5 microseconds. The time taken to send out a 1500 byte data packet and a short ACK packet is 1250 microseconds. Will the stop-and-wait method be efficient? Explain your answer. Note that a detailed calculation is not required.
[2 marks]
\square
(c) Explain how the efficiency will change for a wide-area link (hundreds or thousands of kilometres). A calculation is not required.
\square

Student ID: \qquad
(d) Explain how a sliding window protocol affects the efficiency (assuming no packets or ACKs are lost). Draw a simple diagram if you want.
\square
(e) What is the simplest way for a sliding window protocol to handle lost ACKs?
[2 marks]

Student ID:

6. Local Area Networks
 [10 marks]

(a) Describe the main difference between CSMA/CD and CSMA/CA mechanisms. [2 marks]
\square
(b) Which method is used on a wireless LAN? Why?
[2 marks]
\square

Student ID: \qquad
(c) Why is there a maximum cable length allowed for any design of CSMA/CD?
\square
(d) An Ethernet address is divided into two main parts. What are they?

(e) Why does an 802.11 wireless LAN frame contain more than two address fields in its header? [2 marks]
\square

Student ID: \qquad
7. Switching and routing
(a) Consider a device with four ports P1 to P4 connecting to different LANs. The device could be a bridge, a switch, or a router. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ etc. are the addresses of devices connected on those LANs, arranged as follows:

P1: A, C, D, F
P2: B, E, H
P3: G
P4: I, J

Draw up a simple routing table for the central device.
(Hint: the first two lines are given.)
\square
(b) How will a bridge, or a switch with bridging logic, create such a table?
[2 marks]
\square

Student ID: \qquad
(c) What type of address will be in the resulting routing table?
(d) If there are several bridges or switches connected together, how will routing loops be avoided?
[2 marks]
\square
(e) How will a router create such a routing table? In this case, A, B, C etc. may be other routers. Give two specific examples of the method that might be used.
[2 marks]
\square
(f) What type of address will be in the resulting routing table?
\square

Student ID: \qquad
(a) An IP address is best regarded as "just a binary number." What is the main difference between IPv4 and IPv6 addresses?
\square
(b) An IPv4 header has a single 20-byte fixed part (and possibly some 'option' parts), while an IPv6 header has a 40-byte fixed part, and may have one or more 'extension headers.' Explain briefly why the IPv6 header uses extension headers in this way.
[2 marks]
\square
(c) Which fields in the IPv4 header are used when fragmenting and reassembling packets? At what point in the network are IPv4 packets fragmented and reassembled?

Student ID: \qquad
(d) Why is the Identification field in the IPv6 Fragment Header 32 bits rather than 16 as in IPv4?
\square
9. Transport Protocols
(a) What function does a transport protocol perform in a network?
\square
(b) Briefly describe the UDP and TCP protocols. What are the main differences between them? [3 marks]
\square

Student ID: \qquad
(c) TCP is a sliding window protocol. How does its send-window size change when a TCP connection is started? How does the send-window change in response to changing network conditions?
\square
(d) Why is TCP considered to be a "network-friendly" transport protocol? Is UDP a networkfriendly protocol? Justify your answer.
\square

Student ID:

10. Applications

(a) What service is provided by ssh, the Secure Shell Application? Give at least two examples of what it can be used for.
\square
(b) Briefly describe each of the three parts of the ssh architecture, i.e. how does ssh establish transport to a remote host, authenticate its user, and establish a channel to the remote host? [4 marks]
\square
(c) An http connection can be opened securely (over TLS or SSL) using the https: scheme. In what important aspect does https differ from ssh?
\square

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

