Compsci230

Tutorials

Introduction of Testing

» Testing is the process of finding differences between the
expected behavior specified by system models and the
observed behavior of the implemented system. Unit
testing finds differences between a specification of an
object and its realization as a component

» Three testing methods:

Structural testing finds differences between the system
desigh model and a subset of integrated subsystem:s.

Functional testing finds differences between the use case
model and the system.

performance testing finds differences between
nonfunctional requirements and actual system
performance.

An Overview of Testing

4

Reliability is a measure of success with which the observed
behavior of a system conforms to the specification of its
behavior

Software reliability is the probability that a software system
will not cause system failure for a specified time under
specified conditions

Failure is any deviation of the observed behavior from the
specified behavior

erroneous state (also called an error) means the system is in
a state such that further processing by the system will lead to
a failure, which then causes the system to deviate from its
intended behavior

A fault, also called “defect” or “bug,” is the mechanical or
algorithmic cause of an erroneous state

An overview of testing activities

4

Test planning allocates resources and schedules the testing. This activity should occur early
in the development phase so that sufficient time and skill is dedicated to testing. For example,
developers can design test cases as soon as the models they validate

Usability testing tries to find faults in the user interface design of the system. Often,
systems fail to accomplish their intended purpose simply because their users are confused by
the user interface and unwillingly introduce erroneous data.

Unit testing tries to find faults in participating objects and/or subsystems with respect to
the use cases from the use case model

Integration testing is the activity of finding faults by testing individual components in
combination. Structural testing is the culmination of integration testing involving all
components of the system. Integration tests and structural tests exploit knowledge from the
SDD (System Design Document) using an integration strategy described in the Test Plan (TP).

System testing tests all the components together, seen as a single system to identify faults
with respect to the scenarios from the problem statement and the requirements and design
goals identified in the analysis and system design, respectively:

Functional testing tests the requirements from the RAD and the user manual.

Performance testing checks the nonfunctional requirements and additional design goals
from the SDD(System Design Document). Functional and performance testing are done by
developers.

Acceptance testing and installation testing check the system against the project agreement and is
done by the client, if necessary, with help by the developers.

JUnit Introduction

» JUnit is a framework for writing and automating the
execution of unit tests for Java classes.

TestResult = — — Test
run{TestResult)
PN
| —= |
TestCase Testhuite
testName:5tring

run({TestResult) = '
runi TestResult) addTest ()

setUB{}
tearDown ()
runTest ()

g ﬁ\

%

ConcreteTestCase

setUB{}
tearDown ()
runTest()

JUnit Introduction

» ConcretelestCase Class: the setUp() and tearDown()
methods of the concrete test case initialize and clean up
the testing environment. runTest() method includes the
actual test code that exercises the class under test and
compares the results with an expected condition.

» TestResult: report the testing results, either success or
failure.

How to start JUnit

» Using Eclipse create a new project (for example:

Calcuator)

Java - JUnitTe a - Ecli

File | Edit Source Refactor Project Run Window Help
Mew Alt+Shift+N » | (£ Java Project "
Open File... 9 Project.. j
Close Ctrl+W | 85 Package i
Close All Ctrl+Shift+W & Class !
Save Cirles &% Interface |
[], SaveAs... G Enum 1
Save All Ctrl+Shift+5 @f} Annotation
Revert &Y% Source Folder L
121 Java Working Set
s % Folder
Rename... .:’, File |
&] Refresh F5 | = Untitled Text File 1
Convert Line Delimiters To » E? JUnit Test Case b
= Print... Ctrl+P I'_.E‘ Operational QVT Transformation
Switch Workspace N r_ﬁ Operational QVT Library !
Restart O Task
g Import... Y Bxample.
e Export... CY | Other... Ctrl+MN
Properties Alt+Enter assertEq

Exit

1 WordDealUtilTest.java [JUnitTestd/ src]
2 WordDealUtil.java [JUnitTest2/src]
3 CalculatorTest.java [Junit3/src]

4 Calculatorjava [Junit3/src]

{

Test Last

= BTest
public wvoid -

String t©
Scring T
assertEg

» Right Click the project name and go to the properties

2 Package Explorer =32 Te Hierarchy =1 = I =
- =2 Client
- :‘?d [PP [
So Into
Open in MMew Windowe
. Open Type Hierarchy 4
- Showw In Adt+Shift+WwW -
- e
- = Copyr CErl—
B= Copy Qualified MName
= Paste CErl+-W
- Celete Celete
- FRemowe from Contesxt CErl+Alt+ Shift+ Down
- = Build Path -
- Scurce Alt+ Shift+5S »
Refactor Alt+Shift+T »
E= Import...
: fraac | Export...
» BEF | S Refresh Fs
: :—:: Close Project
. ; Close Unrelated Projects
- - Assign Working Sets...
“ Rumn A= >
Debug s -
Walidate
Tearm -
Compare With >
. Restore from Local Histomnyr...
- Configure >
Properties Adt+ Enter

» Go to the build path -> Add library -> Junit-> |JUnit4

’
== Properties for Junit

:Eg

type filter text

Resource
Builders

Java Build Path
Java Code Style
Java Compiler
Java Editor
Javadoc Location

w

w

w

Project References
Run/Debug Settings

! > Task Repository
]. Task Tags

| Validation

| WikiText

Java Build Path

- -

w

| # Spurce | = Projects| =i Libraries |"~}{} Order and B(port|

JARs and class folders on the build path:

=i JRE System Library [05Gi/Minimum-1.2]

Add JARs...

Add External JARs...

Add Library...

Add Class Folder...

i
[
| Add Varible..
[
[
[Add External Class Folder..

l
l
l
l
l
J

Edit...

Remove

Migrate JAR File...

S

OK] [Cancel

» Calculator-> New->Junit Test Case

v

v

v

v

v

Package Explorer &2
= Client
3}'7‘1 Junit

a 5 osrc

'Eg Hierarchy

a 1 (default package)

- | [J] Calculator.iava

B s

= = 8| [4] WordDealUtiljava

[7] WordDealUtilTest.java ¢
POapiLlc VOld WOoOrdrnormac9uUsSHaLa

i
String target = null;
String result = wordDeall
assertNull (result) ;

» 4] Calculato
> BE=h JRE Systern Libran
> B JUnit 4
= Junit3
a 78 src
a B (default pack
- [J] Calculato
» 4] Calculato
» == JRE Systern Libran
> B JUnit 3
= JUnitTest2
a 2 src
a 7 (default pack
> [J] WordDeal
> [0 WordDeal
» == JRE Systern Libran
> B JUnit 4
K=ol
= Splite
= Test
3}'7‘1 Thread
B2 Turs
a 58 src
a 7 (default pack
= 44| Clock.java
>] Clocké&pp
>] ClockCon
> gd] ClockTest
- 40 stillClock,
» == JRE Systern Libran
> B JUnit 4

X 5

L[

MNew

Open

Open With

Open Type Hierarchy
Show In

Copy

Copy Qualified Mame
Paste

Delete

Remowve from Context
Build Path
Source

Refactor

Import...
Export...

References

Declarations

Refresh
Assign Working Sets...

Fun As

Debug As
Validate

Teamn
Compare With
Replace With

Restore from Local Historny...

Prooperties

F3

F“l
Alt+Shift+W »

Ctrl+C

Ctrl+V
Delete

Ctrl+Alt+Shift+ Down
L
Alt+Shift+5 »
Alt+Shift+T »

F5

Alt+Enter

DdoaREmoRrRee@eeE 10

Jawva Project

Project...

Package

Class

Interface

Enum

Annotation

Source Folder

Jawa Working Set

Folder

File

Untitled Text File

JUnit Test Case
Operational QWT Transformation
Cperational QVT Library

Task
Example...
Other... Ctrl+M
S T T TS T T ey

Test more than one charact

est
puoblic void wordEormat4DBToge
i
String target = "emploves
String result = wordlD=ssI1L
assertEgquals ("employee a
H

2= New JUnit Test Case A —

= Mew JUnit Test Case

I:IEIQ

JUnit Test Case
@ Type already exists,

Test Methods
Select methods for which test method stubs should be created.

E:

() New JUnit 3 test @ New JUnit 4 test

Available methods:

Sourcefolder Junit/src

Package: (default)
Narne: CalculatorTest
Superclass: javalang.Object Browse...

Which method stubs would you like to create?

4 EH@ Calculator |

[]setUpBeforeClass() [|tearDownAfterClass()
setlp() ["ItearDown()
constructor
Do you want to add comments? (Configure templates and default value here)

D Generate comments

Class undertest: Calculator

Browse...

@ < Back

Mext > Finish

@ add(int)
@ substract{int)
@ multiply(int)
@ divide(int)
[7] @ square(int) =
[[] @ squareRoot(int)
f [& clear()
[[] @ getResult]
|| 4 O© Object
| [] @° Object] |
[@F getClass)
[l @ hashCode()
[7] @ equals{Object)
[l [& clone
[l & tnStrinal =

ol Select All

Deselect All

4 methods selected.

[7] Create final method stubs
[7] Create tasks for generated test methods

@

Met> | Finish

|| concel

Example of Calculator

import static org.junit.Assert.*;

import org.junit.Before;
import org.junit. Test;

import org.junit.Before;
import org.junit.Ignore;

import org.junit. Test;

public class CalculatorTest {
private static Calculator calculator = new Calculator();
@Before
public void setUp() throws Exception {

calculator.clear();

@Test

public void testAdd() {
calculator.add(2);
calculator.add(3);

assertEquals(5, calculator.getResult());

	Compsci230
	Introduction of Testing
	An Overview of Testing	
	An overview of testing activities
	JUnit Introduction
	JUnit Introduction
	How to start JUnit
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Example of Calculator

