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Traditional approach to testing (Waterfall) 



Lecture plan 
 

Week 1:   No class - Anzac Day 
  What is software quality? 
  Some key developer practices (version control, testing). 
   
Week 2:  Black box testing.  
  White-box testing.  
  Myers' testing principles. 
   
Week 3:  Traditional approach to testing (Waterfall).  
  Agile approach to testing (XP). 
  Famous failures. 
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Learning goals 
 Have a working understanding of : 
 the waterfall model for software development 
 testing in the waterfall model 
 iterative, incremental and evolutionary development 

 

 Discuss: 
 limitations of the waterfall model 
 agile alliance and manifesto 
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Brief history of waterfall 
 1960s : programming is an ‘art’ 
 practitioners receive no formal training 
 serious concerns about quality as projects became larger  

 
 1968 : conference organised by the NATO Science Committee  
 discussed issues with ‘software manufacture’ 
 coined the term ‘software engineering’ 
 introduced standard development model (waterfall) based on staged 

manufacturing process  
 

 Note : many ‘current’ issues discussed (need to iterate, obtain feedback from 
customer, reuse,  product architecture) BUT appears to have been little attempt 
to reframe software development as anything other than a manufacturing 
process. 
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Waterfall model 
 Staged model. Each stage : 

 
 implemented by different people 

with different skill sets 
 must be completed and ‘signed off’ 

before the next begins 
 verified against the previous stage 

before sign-off 
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Waterfall model - verification 
 At each stage, what is needed to verify that the product is being built 

according to what is stated in the previous stage  (Are we building the 
product right)?  

 
 Documents – requirements specs, design specs, code, test cases 
 Process – reviews, walkthroughs, inspections 
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Waterfall model - documents 
 Documents play a critical role in the verification process. 
 Document standards : 

 
 IEEE Recommended Practice for Software Requirements Specifications (SRS) 
 etc. 
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Waterfall model - requirements 
 A template from the IEEE SRS. 

 
 Note that, in addition to the 

features, you must consider 
external product interfaces and 
non-functional requirements. 
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V-model for testing 
 Staged model testing : Each stage 
 has a corresponding kind of test  
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V-model for testing 
 Component (unit) test 
 Does the component implement the 

design? 
 

 Performed by  
 developer OR 
 independent tester 

 
 Issues 
 Cannot catch every bug in a component. 

Impossible to test 
 every combination of inputs (black box) 
 every execution path (white box) 
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V-model for testing 

 Interface (integration) test 
 Do the components work with each other? 

 

 Performed by  
 developer OR 
 independent build person 

 

 Issues 
 Many integration issues for large application 

 interfaces 
 misunderstanding about functionality 
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V-model for testing 
 System test 
 Does the software deliver to the 

specification (functional and non-
functional requirements)? 
 

 Performed by  
 specialised test team 

 
 Issues 
 Can be difficult to replicate user’s 

(production) environment 
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V-model for testing 

 Acceptance test 
 Does the software deliver what the customer 

wanted? 
 

 Performed by  
 specialised QA team and/or 
 customer (alpha releases) 

 

 Issues 
 Can be difficult to replicate user’s environment 

 use low spec machines to test e.g. latency issues 

13 2015 S1 Software Quality 



V-model for testing 
 Release test 
 Does the software work in the existing 

business environment? 
 

 Performed by  
 operations team and/or 
 customer (beta releases) 

 
 Issues 
 Customers can be busy and don’t want to 

be interrupted 
 If beta testing, need committed users  
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V-model for testing 
 System, acceptance and release tests aim to validate that the 

software does what the customer wants it to do (Did we build the right 
product?) 
 
 

 System test 
 Does the software deliver to the specification? Test team. 

 

 Acceptance test 
 Does the software deliver what the customer wanted? Customer. 

 

 Release test 
 Does the software work in the existing business environment? Operations 

team. 
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Quality characteristics 
 Testing relating to quality characteristics: 

 
 Load testing – apply maximum loads to test maximum capacity.   
 Stress testing – find breaking point by applying over the maximum load.   
 Usability testing – measure how quickly users  

 learn to use the system 
 complete specific tasks 
 etc.  

 Reliability testing 
 Portability testing 
 etc. 
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Other testing 

 Other kinds of testing : 
 

 Smoke testing.  During integration, before the product is handed over 
to the test team, a superficial check is made by the build person that 
the product’s basic features do what they are supposed to. Purpose is, 
of course, to not waste the test team’s time. 
 

 Regression testing.  Applied when changes to the product are needed 
(to fix bugs or add functionality) to make sure nothing is broken. 
Applied at unit, integration and system test levels,   
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 Waterfall - issues 
 Practitioners uncovered some serious issues when implementing a 

waterfall approach : 
 During projects lasting several years, clients often changed their minds about 

what was required.  The wrong product was delivered. 
 changes in environment 
 introduction of new technologies 
 

 The need for extensive documentation resulted in documents not being kept up-
to-date. 
 e.g. during design phase, mistake in requirements document is discovered – fixed in 

design doc but not in requirements doc. 
 

 No communication between practitioners from different phases meant that tacit 
knowledge wasn’t shared. Coders often didn’t really grasp what was wanted. 
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 Waterfall summary 
 

 Waterfall is a staged approach based on a manufacturing paradigm. 
 Created to address problems in large, complex development efforts. 
 Communication is largely via documentation. 
 Serious issues relating to documentation, communication and 

delivering what the customer really wanted. 
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 Agile alliance 
 Many practitioners explored ways to mitigate issues 

 
 Many (most?) projects actually implemented an iterative and incremental 

approach. 
 1970s: Harlan Mills - upfront specification, deliver in many increments. 

 adapt designs as a result of customer feedback. 
 1976:  Tom Gilb formally introduced ideas of ‘evolutionary project management’. 

 no upfront specification, rather discover requirements in an iterative way.  

 
 In 2001, a number of separate groups working on ‘agile’ approaches to 

software development formed the Agile Alliance.  
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 Agile alliance 
 Mission 

“We support those who explore and apply Agile principles and practices to make the 
software industry productive, humane and sustainable.” 

 
 Manifesto 

“We are uncovering better ways of developing software by doing it and helping others do 
it.  Through this work we have come to value: 

 
Individuals and interactions over processes and tools 
Working software over comprehensive documentation 

Customer collaboration over contract negotiation 
Responding to change over following a plan. 

 
That is, while there is value in the items on the right, we value the items on the left more.” 
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 Agile alliance 
 Principles: 
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 Agile methods 
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 Agile approach 
 

 Agile approach is based on a software-as-a-service paradigm. 
 Communication is largely face-to-face. 
 Software is delivered frequently to customers. 
 The agile methods are quite different from one another but have 

the Principles in common. 
 Next session, we will study one agile method, eXtreme 

Programming (XP), in greater detail. 
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