
CompSci 230
Software Design and Construction

 Software Quality 2015S1
Traditional approach to testing (Waterfall)

Lecture plan

Week 1: No class - Anzac Day
 What is software quality?
 Some key developer practices (version control, testing).

Week 2: Black box testing.
 White-box testing.
 Myers' testing principles.

Week 3: Traditional approach to testing (Waterfall).
 Agile approach to testing (XP).
 Famous failures.

2 2015 S1 Software Quality

Learning goals
 Have a working understanding of :
 the waterfall model for software development
 testing in the waterfall model
 iterative, incremental and evolutionary development

 Discuss:
 limitations of the waterfall model
 agile alliance and manifesto

 3 2015 S1 Software Quality

Brief history of waterfall
 1960s : programming is an ‘art’
 practitioners receive no formal training
 serious concerns about quality as projects became larger

 1968 : conference organised by the NATO Science Committee
 discussed issues with ‘software manufacture’
 coined the term ‘software engineering’
 introduced standard development model (waterfall) based on staged

manufacturing process

 Note : many ‘current’ issues discussed (need to iterate, obtain feedback from
customer, reuse, product architecture) BUT appears to have been little attempt
to reframe software development as anything other than a manufacturing
process.

4 2015 S1 Software Quality

Waterfall model
 Staged model. Each stage :

 implemented by different people

with different skill sets
 must be completed and ‘signed off’

before the next begins
 verified against the previous stage

before sign-off

5 2015 S1 Software Quality

http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm

http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm

Waterfall model - verification
 At each stage, what is needed to verify that the product is being built

according to what is stated in the previous stage (Are we building the
product right)?

 Documents – requirements specs, design specs, code, test cases
 Process – reviews, walkthroughs, inspections

6 2015 S1 Software Quality

http://softwaretestingfundamentals.com/verification-vs-validation/

http://softwaretestingfundamentals.com/verification-vs-validation/

Waterfall model - documents
 Documents play a critical role in the verification process.
 Document standards :

 IEEE Recommended Practice for Software Requirements Specifications (SRS)
 etc.

7 2015 S1 Software Quality

IEEE Std 830-1998 - IEEE Recommended Practice for Software Requirements Specifications
/

http://softwaretestingfundamentals.com/verification-vs-validation/

Waterfall model - requirements
 A template from the IEEE SRS.

 Note that, in addition to the

features, you must consider
external product interfaces and
non-functional requirements.

8 2015 S1 Software Quality

IEEE Std 830-1998 - IEEE Recommended Practice for Software Requirements Specifications
/

http://softwaretestingfundamentals.com/verification-vs-validation/

V-model for testing
 Staged model testing : Each stage
 has a corresponding kind of test

9 2015 S1 Software Quality

http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm

AKA Unit test

AKA Integration test

http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm

V-model for testing
 Component (unit) test
 Does the component implement the

design?

 Performed by
 developer OR
 independent tester

 Issues
 Cannot catch every bug in a component.

Impossible to test
 every combination of inputs (black box)
 every execution path (white box)
 10 2015 S1 Software Quality

V-model for testing

 Interface (integration) test
 Do the components work with each other?

 Performed by
 developer OR
 independent build person

 Issues
 Many integration issues for large application

 interfaces
 misunderstanding about functionality

11 2015 S1 Software Quality

V-model for testing
 System test
 Does the software deliver to the

specification (functional and non-
functional requirements)?

 Performed by
 specialised test team

 Issues
 Can be difficult to replicate user’s

(production) environment

12 2015 S1 Software Quality

V-model for testing

 Acceptance test
 Does the software deliver what the customer

wanted?

 Performed by
 specialised QA team and/or
 customer (alpha releases)

 Issues
 Can be difficult to replicate user’s environment

 use low spec machines to test e.g. latency issues

13 2015 S1 Software Quality

V-model for testing
 Release test
 Does the software work in the existing

business environment?

 Performed by
 operations team and/or
 customer (beta releases)

 Issues
 Customers can be busy and don’t want to

be interrupted
 If beta testing, need committed users

14 2015 S1 Software Quality

V-model for testing
 System, acceptance and release tests aim to validate that the

software does what the customer wants it to do (Did we build the right
product?)

 System test
 Does the software deliver to the specification? Test team.

 Acceptance test
 Does the software deliver what the customer wanted? Customer.

 Release test
 Does the software work in the existing business environment? Operations

team.

15 2015 S1 Software Quality

http://softwaretestingfundamentals.com/verification-vs-validation/

http://softwaretestingfundamentals.com/verification-vs-validation/
http://softwaretestingfundamentals.com/verification-vs-validation/
http://softwaretestingfundamentals.com/verification-vs-validation/
http://softwaretestingfundamentals.com/verification-vs-validation/
http://softwaretestingfundamentals.com/verification-vs-validation/

Quality characteristics
 Testing relating to quality characteristics:

 Load testing – apply maximum loads to test maximum capacity.
 Stress testing – find breaking point by applying over the maximum load.
 Usability testing – measure how quickly users

 learn to use the system
 complete specific tasks
 etc.

 Reliability testing
 Portability testing
 etc.

16 2015 S1 Software Quality

Other testing

 Other kinds of testing :

 Smoke testing. During integration, before the product is handed over
to the test team, a superficial check is made by the build person that
the product’s basic features do what they are supposed to. Purpose is,
of course, to not waste the test team’s time.

 Regression testing. Applied when changes to the product are needed
(to fix bugs or add functionality) to make sure nothing is broken.
Applied at unit, integration and system test levels,

17 2015 S1 Software Quality

 Waterfall - issues
 Practitioners uncovered some serious issues when implementing a

waterfall approach :
 During projects lasting several years, clients often changed their minds about

what was required. The wrong product was delivered.
 changes in environment
 introduction of new technologies

 The need for extensive documentation resulted in documents not being kept up-
to-date.
 e.g. during design phase, mistake in requirements document is discovered – fixed in

design doc but not in requirements doc.

 No communication between practitioners from different phases meant that tacit
knowledge wasn’t shared. Coders often didn’t really grasp what was wanted.

18 2015 S1 Software Quality

 Waterfall summary

 Waterfall is a staged approach based on a manufacturing paradigm.
 Created to address problems in large, complex development efforts.
 Communication is largely via documentation.
 Serious issues relating to documentation, communication and

delivering what the customer really wanted.

19 2015 S1 Software Quality

 Agile alliance
 Many practitioners explored ways to mitigate issues

 Many (most?) projects actually implemented an iterative and incremental

approach.
 1970s: Harlan Mills - upfront specification, deliver in many increments.

 adapt designs as a result of customer feedback.
 1976: Tom Gilb formally introduced ideas of ‘evolutionary project management’.

 no upfront specification, rather discover requirements in an iterative way.

 In 2001, a number of separate groups working on ‘agile’ approaches to

software development formed the Agile Alliance.

20 2015 S1 Software Quality

http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.agilealliance.org/

http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.agilealliance.org/

 Agile alliance
 Mission

“We support those who explore and apply Agile principles and practices to make the
software industry productive, humane and sustainable.”

 Manifesto

“We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.”

21 2015 S1 Software Quality

http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.agilealliance.org/

http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.agilealliance.org/

 Agile alliance
 Principles:

22 2015 S1 Software Quality

http://www.agilealliance.org/

http://www.agilealliance.org/
http://www.agilealliance.org/

 Agile methods

23 2015 S1 Software Quality

http://en.wikipedia.org/wiki/Agile_software_development

http://en.wikipedia.org/wiki/Agile_software_development

 Agile approach

 Agile approach is based on a software-as-a-service paradigm.
 Communication is largely face-to-face.
 Software is delivered frequently to customers.
 The agile methods are quite different from one another but have

the Principles in common.
 Next session, we will study one agile method, eXtreme

Programming (XP), in greater detail.

24 2015 S1 Software Quality

	CompSci 230�Software Design and Construction�
	Lecture plan
	Learning goals
	Brief history of waterfall
	Waterfall model
	Waterfall model - verification
	Waterfall model - documents
	Waterfall model - requirements
	V-model for testing
	V-model for testing
	V-model for testing
	V-model for testing
	V-model for testing
	V-model for testing
	V-model for testing
	Quality characteristics
	Other testing
	 Waterfall - issues
	 Waterfall summary
	 Agile alliance
	 Agile alliance
	 Agile alliance
	 Agile methods
	 Agile approach

