CompSci 230
Software Construction

Lecture Slides #3: Introduction to OOD S1 2015
Version 1.1 of 2015-03-12: added return to code on slides 10, 13

SIS

F_ Agenda

» Topics:
Software Design (vs. hacking)

Object-Oriented Design (vs. other approaches to SVV design)
Classes & Objects

Introduction to UML class diagrams

Object diagrams may be helpful for visualizing instantiations

Variables & Methods

2 COMPSCI 230: IOOD

SIS

F_Software Design

» Communication:

identify stakeholders, find out what they want and need.
» Planning:

list tasks, identify risks, obtain resources, define milestones, estimate schedule.
» Modeling

develop structure diagrams and use cases, maybe some other UML artifacts.
Different approaches: OO, procedural, data.

» Construction:
implement the software, with assured quality.
» Deployment:
deliver the software, then get feedback for possible revision.

To learn more:
R. Pressman, Software Engineering: A Practitioner’s Approach, 7*" Ed., 2010, pp. 14-15.

3 COMPSCI 230: IOOD

SIS

@ What is Object-Oriented Design?

THE UNIVERSITY OF AUCKLAND

» In OO design, a system is a
collection of interacting objects.

Each object should have simple
attributes and behaviours.

Each object should have simple
relations to other objects.

» In procedural design, a system is a
collection of basic blocks.

Each basic block should have a simple
effect on local and global variables.

Basic blocks are linked by control-
flow arcs: if/then/else, call/return,
while/loop, for/loop, case, goto, ...

» In data architecture, a system is a

collection of data structures, with
access and update methods.

Each data structure should have
simple relations to other data

4 structures. COMPSCI 230: I0OOD

PROCEDURE PM{E;“.(

FERFORA
0 e

PROGRAM

N
Bo WHlltE

£
What is an Object?
» A building block for OO development

Like objects in the world around us

Obijects have state and behaviour

» Examples:
Dog
State/field/attribute: name, colour, isHungry, ...
Behaviour: bark(), fetch(), eat(), ...
Bicycle
State: gear, cadence, colour, ...
Behaviour: brake(), turn(), changeGear(), ...

VCR

State: brand, colour; isOn ...
Behaviour: play(), stop(), rewind(), turnOn(), ...

5 COMPSCI 230: IOOD

SIS

E Classes & Objects

» Class
A set of objects with shared behaviour and individual state

Individual state:
Data is stored with each instance, as an instance variable.

Shared behaviour:
Code is stored with the class object, as a method.

Shared state may be stored with the class object, as a class variable.

» Obiject ig

Objects are created from classes at runtime by instantiation
There may be zero, one, or many objects (instances) of a class.

usually with New.

Instantiated objects are garbage-collected if no other
user-defined object can reference them.

SIS

Imagine a world of communicating objects

THE UNIVERSITY OF AUCKLAND

» Obiject

An object remembers things (i.e. it has a memory): its state.

An object responds to messages it gets from other objects.
It performs the method with the given parameters, then sends a response.

An object that receives a strange message may throw an exception. Be careful!

An object’s method may “ask for help” from other objects.
It sends a message to an object, and waits for a response.

A method may send a message to itself! This is called recursion. Be careful.

» Messages between objects

Usually: method calls and method returns, sometimes exceptions.

7 COMPSCI 230: IOOD

SIS

Z_Information Hiding

» The implementation details of a method should be of no concern
to the sender of the message.

If a JavaKid tells a JavaDog to fetch (), the dog might run across
a busy street during its fetch ().

Parameterised methods allow the senders to have more control over
object behaviour. For example, a JavaDog might have a parameterised
fetch () method:

ball = dog.fetch (SAFELY) ;
» Note:in these lecture slides, the word “should’” indicates an
element of style.

You should write Java code that is understandable to other Java
programmers.

8 COMPSCI 230: IOOD

Eall

SIZE int
¥Pos cint

Example 1: Ball = fren

colar: Colar

==greate== Ball(x inty ;intc: Colon

4 Attrlbutes paintiy : Graphics) : void

mowve(delta: int, deltay :int) ;void Example: Ball.java

Represent the internal state of an

. . ublic class Ball
instance of this class. .

{
public final static int SIZE = 20;

private int xPos;

» Constructor

Creates the object private int yPos;
private Color color;
» Methods public Ball (int x, int y, Color c) {

. xPos = x;
Implement the processing

yPos = y;
performed by or to an object, oftel\ color = c;
}

updating its state.
public void move (int deltaX, int deltaY) {

If there are read and write methods xPos += deltaX;
for an attribute x, these should be yPos += deltaY;
}
called getx () and setX() ’ public void paint (Graphics g) {

You should learn Java’s conventions Foaitenenaelen)

for capitalisation and naming. } g.f1ll0val(xPos,yPos, SIZE, SIZE) ;

9 } COMPSCI 230: 100D

SIS

2 Object Instantiation

NEW ZEALAND

» When a constructor method is called, a new instance is created.

Ball b = new Ball(10, 20, Color.Red); b: Ball
Ball ¢ = new Ball(0, 10, Color.Blue); xPos = 10
Ball)’POS =20
SIZE - int Color = Red
wPos Cint
color: Color xPos = 0
==create== Ballix inty intc: Color
paintig : Graphics) :waid YPOS =10
moveldeltaX ;intdeltay’: inty ; void Color = Blue

» If a class definition doesn’t include a constructor method, the Java
compiler inserts a default constructor with default initialisations.

public class Classl { Classl d = new Classl();

private int x; Classt
// Note no explicit constructor % int
public int increment () { increments - int
return ++x;
} x=0 Blecch!

10 } /] is this good code? COMPSCI 230: I00D

SIS,

2 Message Passing

» In a method call,a message is passed to a receiver object.

» The receiver’s response to the message is determined by its class.

Ball b = new Ball (10, 20, Color.Red); Ball
SIFE - int
¥Pos int
b.move (50, 100); yPos :int
(!) calor: Calar b: Ball
\ ==create== Ballix :inty : int,c : Colon xPos = 40 60
paint(a : Graphics) : void
message move(delta:l - intdeltay :int) ; void)'POS =20120
Color = Red

receiver
arguments

public class Ball {

public void move (int deltaX, int deltaY) {
xPos += deltaX;
yPos += deltayY;
}
}

11 COMPSCI 230: IOOD

SIS

¥ [nstance & Class Variables

» Class variables are statically allocated, so they =

SIZE - int

are shared by an entire Class of objects. ot

The runtime system allocates class variables once per class, [©"“
==create== Ball(x :inty :int,c : Color

regardless of the number of instances created of that class. |win: oraphics) :voia

moveldelta ; int deltay : int) ; void

Static storage is allocated when the class is loaded.
All instances share the same copy of the class variables.

» Instance variables are dynamically allocated, so they iClass |
may have different values in each instance of an object. name = “Ball”
When an object is instantiated, the runtime system size = 10

allocates some memory to this instance — so that it can
“remember” the values it stores in instance variables.

» Test your understanding:

xPos=10 xPos =10
List the names of all class variables in Ball. yPos = 20 yPos = 10
List the names of all instance variables in Ball. Color = Red Color = Blue

12 COMPSCI 230: IOOD

SIS

¥ [nstance & Class Methods

» Instance methods operate on this pilEiae alleen Sleasl {

. " . . private int x;
object’s instance variables. public int increment() f{
return ++x; // or x++ ?

They also have read & write access to class }
variables. }
E.g. Classt

» Class methods are static. :int

. increment - int
Class methods cannot access instance y

variables.

Class methods are handled by the “class
object” — they can be called even if there are
no instances of this class.

(Example on the next slide.)

13 COMPSCI 230: IOOD

SIS

@ Class1App

public class ClasslApp ({
public static void main(String[] args) {
Classl x = new Classl () ;
System.out.println (
"Without initialisation, ++x = "
+ x.increment ()
) ;
System.out.println (
"After another incrementation, ++x = "

+ x.increment ()
) . Class1App
14

mainfargs . String[]) : wvoid

14 COMPSCI 230: 100D

SIS

E BallApp

import Jjava.awt.¥*; public void paint (Graphics g) {
import java.awt.event.*; b.paint(g),

public class BallApp extends Frame{

Ball b = new Ball(20, 30, Color.blue); public static void main(
String[] args
public BallApp() {) {
addWindowListener (new BallApp() ;
new WindowAdapter () { }
public void windowClosing (}

WindowEvent e

) {
System.exit(0);

} BallApp
} b Ball
)/ =z=pregte== BallApp()
setSize(300, 200); paint(a : Graphics) wvaoid
setVisible(true); mainfargs . sStringl) : woid

15 COMPSCI 230: 100D

AR public class SharedCounter { SharedCounter

private static int count; count : int
private int value; value - int
e public SharedCounter (int value) { «create» SharedCounter(value : int)
. _ . getCount() - int

this.value = value; toString() - String

count++;
} . —]
public int getValue() { :Class

HEELEL TENNES name = “SharedCounter”
} —

count =042 3

public static int getCount() ({

return count;

} cl: SharedCounter
public String toString() {

return "value=" + value + " count=" + count; value = 10

} | \

} c2: SharedCounter

public static void main(String[] args) { value = 100
SharedCounter cl = new SharedCounter (10) ; \
SharedCounter c2 = new SharedCounter (100) ;

SharedCounter c3 = new SharedCounter (200) ; c3: SharedCounter
. .printl 1 +""+c2+"" + s —
System.out.println(c c c3) value = 200

16 COMPSCI 230: IOOD

UV

» Unified Modeling Language (UML) a1

When creating complex OO systems, where do we start?
When building complex systems, it might be worthwhile to plan things out
before you start coding!
When building a house, we usually have a set of plans.
» UML is a language which allows us to graphically model an OO
system in a standardised format.

This helps us (and others!) understand the system.

» There are many different UML diagrams, allowing us to model
designs from many different viewpoints. Roughly, there are
Structure diagrams (documenting the architecture), e.g. class diagrams

Behaviour diagrams (documenting the functionality), e.g. use-case diagrams

17 COMPSCI 230: IOOD

SIS,

2 _Object Diagrams in UML

» In this lecture, | have drawn some object diagrams of instance
models (using coloured boxes).

» An object diagram is a graphic representation of an instance model, showing the
state of a system after some objects have been instantiated, and after some variables
of these objects have been updated.

» Object diagrams are very helpful in tuition, but are not commonly used outside the
classroom.

» Please focus on the basics.
» Understand the distinction between static variables and instance variables.
» Develop a working understanding of instantiation — this is a crucial concept!
» Learn how to draw UML-standard class diagrams.

» Honours-level students might want to learn more about object diagrams. |
recommend ” online

Help resource for the IBM Rational Software Modeler, available 4 March 2014.

18 COMPSCI 230: IOOD

http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/twrkobjd.html
http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/twrkobjd.html

SIS,

¥ _Tool Support: Eclipse & ArgoUML?

» You will need a Java development environment. | strongly recommend

The de-facto industry standard for Java developers. It’s FOSS: free and open-source software. Its
codebase is robust and is under active development. Your tutors will help you learn Eclipse.

Alternatively, you may use javac and a text editor (e.g. emacs) with Java support

| reckon every Java developer should know how to run javac from a console, but | won’t attempt to
teach this!

» You will draw some class diagrams and use-case diagrams. Options:

Supports forward- and reverse-engineering.
Class diagrams = Java skeletons. Java classes = class diagrams.

FOSS, works ok but missing some features such as an “undo” button — save your versions carefully!
No longer under active development: v0.34 is dated |5 December 201 1.

Not on lab image — you’ll have to download and unzip the in your echome directory
(or on your USB pendrive) then double-click on argouml . jar (this is an “executable jarfile”). See

Any general-purpose drawing package (e.g.Visio)

Warning: you'll have trouble with the fancy arrowheads in UML! Maybe ?
By hand:

This is your only option during exams and tests
You'll have to scan your drawings into your assignments (which are submitted online)

19 COMPSCI 230: IOOD

http://www.eclipse.org/
http://argouml.tigris.org/
http://argouml-downloads.tigris.org/nonav/argouml-0.34/ArgoUML-0.34.zip
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms

SIS

ZEAL

» The OO approach is based on modeling the real world using interacting
objects.

OO design is a process of determining what the stakeholders require, designing
a set of classes with objects which will meet these requirements, implementing,
and delivering.

» The statements in a class define what its objects remember and what
they can do (the messages they can understand), that is, they define

Instance variables, class variables, instance methods, and class methods

» The hardest concept in this set of lecture slides: instantiation.

Very important!

» A UML class diagram shows the “bare bones” of an OO system design.

It need not show all classes! (A diagram should not have irrelevant information.)

20 COMPSCI 230: IOOD

