
CompSci 230

Software Construction

 Lecture Slides #3: Introduction to OOD S1 2015

Version 1.1 of 2015-03-12: added return to code on slides 10, 13

Agenda

COMPSCI 230: IOOD 2

 Topics:

 Software Design (vs. hacking)

 Object-Oriented Design (vs. other approaches to SW design)

 Classes & Objects

 Introduction to UML class diagrams

 Object diagrams may be helpful for visualizing instantiations

 Variables & Methods

Software Design

COMPSCI 230: IOOD 3

 Communication:

 identify stakeholders, find out what they want and need.

 Planning:

 list tasks, identify risks, obtain resources, define milestones, estimate schedule.

 Modeling

 develop structure diagrams and use cases, maybe some other UML artifacts.

 Different approaches: OO, procedural, data.

 Construction:

 implement the software, with assured quality.

 Deployment:

 deliver the software, then get feedback for possible revision.

To learn more:

R. Pressman, Software Engineering: A Practitioner’s Approach, 7th Ed., 2010, pp. 14-15.

 What is Object-Oriented Design?

 In OO design, a system is a
 collection of interacting objects.

 Each object should have simple
attributes and behaviours.

 Each object should have simple
relations to other objects.

 In procedural design, a system is a
 collection of basic blocks.

 Each basic block should have a simple
effect on local and global variables.

 Basic blocks are linked by control-
flow arcs: if/then/else, call/return,
while/loop, for/loop, case, goto, …

 In data architecture, a system is a
 collection of data structures, with

access and update methods.

 Each data structure should have
simple relations to other data
structures. COMPSCI 230: IOOD 4

object 3

object 2

object 4

object 1

Program

What is an Object?

COMPSCI 230: IOOD 5

 A building block for OO development

 Like objects in the world around us

 Objects have state and behaviour

 Examples:

 Dog

 State/field/attribute: name, colour, isHungry, …

 Behaviour: bark(), fetch(), eat(), …

 Bicycle

 State: gear, cadence, colour, …

 Behaviour: brake(), turn(), changeGear(), …

 VCR

 State: brand, colour, isOn …

 Behaviour: play(), stop(), rewind(), turnOn(), …

Classes & Objects

6

 Class

 A set of objects with shared behaviour and individual state

 Individual state:

 Data is stored with each instance, as an instance variable.

 Shared behaviour:

 Code is stored with the class object, as a method.

 Shared state may be stored with the class object, as a class variable.

 Object

 Objects are created from classes at runtime by instantiation

 usually with New.

 There may be zero, one, or many objects (instances) of a class.

 Instantiated objects are garbage-collected if no other
user-defined object can reference them.

Imagine a world of communicating objects

COMPSCI 230: IOOD 7

 Object

 An object remembers things (i.e. it has a memory): its state.

 An object responds to messages it gets from other objects.

 It performs the method with the given parameters, then sends a response.

 An object that receives a strange message may throw an exception. Be careful!

 An object’s method may “ask for help” from other objects.

 It sends a message to an object, and waits for a response.

 A method may send a message to itself! This is called recursion. Be careful.

 Messages between objects

 Usually: method calls and method returns, sometimes exceptions.

Information Hiding

COMPSCI 230: IOOD 8

 The implementation details of a method should be of no concern

to the sender of the message.

 If a JavaKid tells a JavaDog to fetch(), the dog might run across

a busy street during its fetch().

 Parameterised methods allow the senders to have more control over
object behaviour. For example, a JavaDog might have a parameterised

fetch() method:

 ball = dog.fetch(SAFELY);

 Note: in these lecture slides, the word “should” indicates an

element of style.

 You should write Java code that is understandable to other Java

programmers.

Example 1: Ball

 Attributes

 Represent the internal state of an

instance of this class.

 Constructor

 Creates the object

 Methods

 Implement the processing

performed by or to an object, often

updating its state.

 If there are read and write methods
for an attribute x, these should be

called getX() and setX().

 You should learn Java’s conventions
for capitalisation and naming.

COMPSCI 230: IOOD 9

public class Ball

{

 public final static int SIZE = 20;

 private int xPos;

 private int yPos;

 private Color color;

 public Ball(int x, int y, Color c) {

 xPos = x;

 yPos = y;

 color = c;

 }

 public void move(int deltaX, int deltaY) {

 xPos += deltaX;

 yPos += deltaY;

 }

 public void paint(Graphics g) {

 g.setColor(color);

 g.fillOval(xPos,yPos,SIZE,SIZE);

 }

}

Example: Ball.java

Object Instantiation

COMPSCI 230: IOOD 10

 When a constructor method is called, a new instance is created.

 If a class definition doesn’t include a constructor method, the Java

compiler inserts a default constructor with default initialisations.

Ball b = new Ball(10, 20, Color.Red);

Ball c = new Ball(0, 10, Color.Blue);

public class Class1 {

 private int x;

 // Note no explicit constructor

 public int increment() {

 return ++x;

 }

}

b: Ball

xPos = 10

yPos = 20

Color = Red
c: Ball

xPos = 0

yPos = 10

Color = Blue

d: Class1

x = 0

Class1 d = new Class1();

Blecch!

// is this good code?

Message Passing

COMPSCI 230: IOOD 11

 In a method call, a message is passed to a receiver object.

 The receiver’s response to the message is determined by its class.

b.move(50, 100);

Ball b = new Ball(10, 20, Color.Red);

b: Ball

xPos =10

yPos = 20

Color = Red

b: Ball

xPos = 10 60

yPos = 20120

Color = Red receiver
message

arguments

public class Ball {

...

 public void move(int deltaX, int deltaY) {

 xPos += deltaX;

 yPos += deltaY;

 }

}

Instance & Class Variables

COMPSCI 230: IOOD 12

 Class variables are statically allocated, so they

 are shared by an entire Class of objects.

 The runtime system allocates class variables once per class,
regardless of the number of instances created of that class.

 Static storage is allocated when the class is loaded.

 All instances share the same copy of the class variables.

 Instance variables are dynamically allocated, so they

 may have different values in each instance of an object.

 When an object is instantiated, the runtime system
allocates some memory to this instance – so that it can
“remember” the values it stores in instance variables.

 Test your understanding:

 List the names of all class variables in Ball.

 List the names of all instance variables in Ball.

b2: Ball

xPos =10

yPos = 10

Color = Blue

: Class

name = “Ball”

size = 10

b1: Ball

xPos=10

yPos = 20

Color = Red

Instance & Class Methods

COMPSCI 230: IOOD 13

 Instance methods operate on this

object's instance variables.

 They also have read & write access to class

variables.

 E.g. _______________

 Class methods are static.

 Class methods cannot access instance

variables.

 Class methods are handled by the “class

object” – they can be called even if there are

no instances of this class.

 (Example on the next slide.)

public class Class1 {

 private int x;

 public int increment() {

 return ++x; // or x++ ?

 }

}

Class1App

COMPSCI 230: IOOD 14

public class Class1App {

 public static void main(String[] args) {

 Class1 x = new Class1();

 System.out.println(

 "Without initialisation, ++x = "

 + x.increment()

);

 System.out.println(

 "After another incrementation, ++x = "

 + x.increment()

);

 }

}

BallApp

15

import java.awt.*;

import java.awt.event.*;

public class BallApp extends Frame{

 Ball b = new Ball(20, 30, Color.blue);

 public BallApp() {

 addWindowListener(

 new WindowAdapter() {

 public void windowClosing(

 WindowEvent e

) {

 System.exit(0);

 }

 }

);

 setSize(300, 200);

 setVisible(true);

 }

 public void paint(Graphics g) {

 b.paint(g);

 }

 public static void main(

 String[] args

) {

 new BallApp();

 }

}

COMPSCI 230: IOOD

: Class

name = “SharedCounter”

count = 0

: Class

name = “SharedCounter”

count = 0 1

: Class

name = “SharedCounter”

count = 0 1 2

: Class

name = “SharedCounter”

count = 0 1 2 3

COMPSCI 230: IOOD 16

public class SharedCounter {

 private static int count;

 private int value;

 public SharedCounter(int value) {

 this.value = value;

 count++;

 }

 public int getValue() {

 return value;

 }

 public static int getCount() {

 return count;

 }

 public String toString() {

 return "value=" + value + " count=" + count;

 }

}

public static void main(String[] args) {

 SharedCounter c1 = new SharedCounter(10);

 SharedCounter c2 = new SharedCounter(100);

 SharedCounter c3 = new SharedCounter(200);

 System.out.println(c1 + " " + c2 + " " + c3);

}

c1: SharedCounter

value = 10

c3: SharedCounter

value = 200

c2: SharedCounter

value = 100

UML

COMPSCI 230: IOOD 17

 Unified Modeling Language (UML)

 When creating complex OO systems, where do we start?

 When building complex systems, it might be worthwhile to plan things out

before you start coding!

 When building a house, we usually have a set of plans.

 UML is a language which allows us to graphically model an OO

system in a standardised format.

 This helps us (and others!) understand the system.

 There are many different UML diagrams, allowing us to model

designs from many different viewpoints. Roughly, there are

 Structure diagrams (documenting the architecture), e.g. class diagrams

 Behaviour diagrams (documenting the functionality), e.g. use-case diagrams

Object Diagrams in UML

COMPSCI 230: IOOD 18

 In this lecture, I have drawn some object diagrams of instance

models (using coloured boxes).

 An object diagram is a graphic representation of an instance model, showing the

state of a system after some objects have been instantiated, and after some variables

of these objects have been updated.

 Object diagrams are very helpful in tuition, but are not commonly used outside the

classroom.

 Please focus on the basics.

 Understand the distinction between static variables and instance variables.

 Develop a working understanding of instantiation – this is a crucial concept!

 Learn how to draw UML-standard class diagrams.

 Honours-level students might want to learn more about object diagrams. I

recommend “Modelling instances of classifiers using UML object diagrams”, online

Help resource for the IBM Rational Software Modeler, available 4 March 2014.

http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/twrkobjd.html
http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/twrkobjd.html

Tool Support: Eclipse & ArgoUML?

COMPSCI 230: IOOD 19

 You will need a Java development environment. I strongly recommend Eclipse.
 The de-facto industry standard for Java developers. It’s FOSS: free and open-source software. Its

codebase is robust and is under active development. Your tutors will help you learn Eclipse.

 Alternatively, you may use javac and a text editor (e.g. emacs) with Java support

 I reckon every Java developer should know how to run javac from a console, but I won’t attempt to
teach this!

 You will draw some class diagrams and use-case diagrams. Options:
 ArgoUML

 Supports forward- and reverse-engineering.
 Class diagrams  Java skeletons. Java classes  class diagrams.

 FOSS, works ok but missing some features such as an “undo” button – save your versions carefully!

 No longer under active development: v0.34 is dated 15 December 2011.

 Not on lab image – you’ll have to download and unzip the binary distribution in your echome directory
(or on your USB pendrive) then double-click on argouml.jar (this is an “executable jarfile”). See
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html.

 Any general-purpose drawing package (e.g. Visio)

 Warning: you’ll have trouble with the fancy arrowheads in UML! Maybe Softwarestencils.com/uml/visio?

 By hand:

 This is your only option during exams and tests

 You’ll have to scan your drawings into your assignments (which are submitted online)

http://www.eclipse.org/
http://argouml.tigris.org/
http://argouml-downloads.tigris.org/nonav/argouml-0.34/ArgoUML-0.34.zip
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms

Review

COMPSCI 230: IOOD 20

 The OO approach is based on modeling the real world using interacting

objects.

 OO design is a process of determining what the stakeholders require, designing

a set of classes with objects which will meet these requirements, implementing,

and delivering.

 The statements in a class define what its objects remember and what

they can do (the messages they can understand), that is, they define

 Instance variables, class variables, instance methods, and class methods

 The hardest concept in this set of lecture slides: instantiation.

 Very important!

 A UML class diagram shows the “bare bones” of an OO system design.

 It need not show all classes! (A diagram should not have irrelevant information.)

