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Digraphs

Definition

A digraph G = (V , E) is a finite nonempty set V of nodes
together with a (possibly empty) set E of ordered pairs of nodes
of G called arcs.
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V = {0, 1, 2, 3, 4, 5, 6}

(4,0),(4,3),(4,5),

E = {(0,1),(0,3),(1,2),
(2,0),(2,5),(2,6),(3,1),

(5,3),(5,6),(6,5)}
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Graphs

Definition

A graph G = (V , E) is a finite nonempty set V of vertices
together with a (possibly empty) set E of unordered pairs of
vertices of G called edges.
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V = {a, b, c, d, e, f, g, h}

E = {{a, b}, {b, d}, {a, d}, {b, c}, {c, d},
{d, f}, {d, h}, {f, h}, {e, g}}
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Basic definitions of [di]graphs

Let G = (V , E) be a digraph then:

If (u, v) ∈ E , we say that v is adjacent to u, that v is an
out-neighbor of u, and that u is an in-neighbor of v .
The order is |V |, the number of nodes. (often denoted by
variable n)
The size is |E |, the number of arcs. (often denoted by
variable m or e)
The out-degree of a node v is the number of arcs leaving
v , and the in-degree of v is the number of arcs entering v .
A node of in-degree 0 is called a source and a node of
out-degree 0 is called a sink.
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Walks, paths and cycles

Definition
A walk in a digraph G is a sequence of nodes v0 v1 . . . vn such
that, for each i with 0 ≤ i < n, (vi , vi+1) is an arc in G. The
length of the walk v0 v1 . . . vn is the number n (that is, the
number of arcs involved).
A path is a walk in which no node is repeated. A cycle is a walk
in which v0 = vn and no other nodes are repeated.

Fact
By convention, a cycle in a graph is of length at least 3.
If there is a walk from u to v, then there is at least one path
from u to v.
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Walks, paths and cycles in digraphs
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Seq. walk? path? cycle?
0 2 3 no no no
3 1 2 yes yes no
1 2 6 5 3 1 yes no yes
4 5 6 5 yes no no
4 3 5 no no no
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Walks, paths and cycles in graphs
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Seq. walk? path? cycle?
a b c yes yes no
e g e yes no no
d b c d yes no yes
d a d f yes no no
a b d f h yes yes no
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Distances and diameter of digraphs

Definition
The distance from u to v in G, denoted by d(u, v), is the
minimum length of a path from u to v . If no path exists, the
distance is undefined (or +∞).

For graphs, we have d(u, v) = d(v , u) for all vertices u and v .

Definition
The diameter of a digraph is the maximum distance between
any two vertices. That is, maxu,v∈V [d(u, v)].
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Examples of path distances in digraphs
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d(0, 1) = 1, d(0, 2) = 2, d(0, 5) = 3
d(0, 4) =∞
d(5, 5) = 0, d(5, 2) = 3, d(5, 0) = 4
d(4, 6) = 2, d(4, 1) = 2, d(4, 2) = 3

diameter is∞
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Examples of path distances in graphs
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d(a, b) = 1, d(a, c) = 2, d(a, f ) = 2
d(a, e) =∞, d(e, e) = 0, d(e, g) = 1
d(h, f ) = 1, d(d , h) = d(h, d) = 1

diameter is∞
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Underlying graph

Definition
The underlying graph of a digraph G = (V , E) is the graph
G′ = (V , E ′) where E ′ = {{u, v} | (u, v) ∈ E}.
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Sub[di]graphs

Definition
A subdigraph of a digraph G = (V , E) is a digraph G′ = (V ′, E ′)
where V ′ ⊆ V and E ′ ⊆ E .

Definition
A spanning subdigraph is one with V ′ = V ; that is, it contains
all nodes.

Definition
The subdigraph induced by a subset V ′ of V is the digraph
G′ = (V ′, E ′) where E ′ = {(u, v) ∈ E | u ∈ V ′ and v ∈ V ′}.
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Computer representation of digraphs

When the vertices V are labeled 0, 1, . . . , n − 1:

Definition
Let G be a digraph of order n. The adjacency matrix of G is the
n × n boolean matrix (often encoded with 0’s and 1’s) such that
entry (i , j) is true if and only if there is an arc from the node i to
node j .

Definition
For a digraph G of order n, an adjacency lists representation is
a sequence of n sequences, L0, . . . , Ln−1. Sequence Li
contains all nodes of G that are adjacent to node i .

The sequence Li may not be sorted! But we usually sort them.
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Adjacency matrix of a digraph
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0 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
1 0 0 1 0 1 0
0 0 0 1 0 0 1
0 0 0 0 0 1 0
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Adjacency lists of a graph

a b
c

d
e

f

g h

symbolic

0= a: b d
1= b: a c d
2= c: b d
3= d: a b c f h
4= e: g
5= f: d h
6= g: e
7= h: d f

numeric
8
1 3
0 2 3
1 3
0 1 2 5 7
6
3 7
4
3 5
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Digraph operations in terms of data structures

Operation Adjacency Matrix Adjacency Lists
arc (i , j) exists? is entry (i , j) 0 or 1 find j in list i
out-degree of i scan row, find 1’s size of list i
in-degree of i scan column, find 1’s for j 6= i , find i in list j
add arc (i , j) change entry (i , j) insert j in list i
delete arc (i , j) change entry (i , j) delete j from list i
add node create new row/column add new list at end
delete node i delete row/column i delete list i

shuffle other entries for j 6= i , delete i from list j
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Comparative performance of adjacency lists and
matrices

Operation array/array list/list1

arc (i , j) exists? Θ(1) Θ(d)

out-degree of i Θ(n) Θ(1)

in-degree of i Θ(n) Θ(n + e)

add arc (i , j) Θ(1) Θ(1)

delete arc (i , j) Θ(1) Θ(d)

add node Θ(n) Θ(1)

delete node i Θ(n) Θ(n + e)

1Here d denotes size of the adjacency list for vertex i .
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General graph traversal algorithm (part 1)

algorithm traverse
Input: digraph G

begin
array color [n], pred [n]
for u ∈ V (G) do

color [u]←WHITE
end for
for s ∈ V (G) do

if color [s] = WHITE then
visit(s)

end if
end for
return pred

end
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General graph traversal algorithm (part 2)

algorithm visit
Input: node s of digraph G

begin
color [s]← GREY; pred [s]← NULL
while there is a grey node do

choose a grey node u
if there is a white neighbor of u

choose such a neighbor v
color [v ]← GREY; pred [v ]← u

else color [u]← BLACK
end if

end while
end
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Illustrating the general traversal algorithm
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e is white neighbor of a
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visit(a)
e is white neighbor of a
choose grey a; no white neighbor; colour black
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visit(a)
e is white neighbor of a
choose grey a; no white neighbor; colour black
choose grey e; no white neighbor; colour black
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visit(a)
e is white neighbor of a
choose grey a; no white neighbor; colour black
choose grey e; no white neighbor; colour black
visit(b)
c is a white neighbor of b
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e

visit(a)
e is white neighbor of a
choose grey a; no white neighbor; colour black
choose grey e; no white neighbor; colour black
visit(b)
c is a white neighbor of b
choose grey c; d is white neighbor
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visit(a)
e is white neighbor of a
choose grey a; no white ...; colour black
choose grey e; no white ...; colour black
visit(b)
c is a white neighbor of b
choose grey c; d is white neighbor
no more white nodes; all nodes turn black
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Traversal arc classifications

Suppose we have performed a traversal of a digraph G,
resulting in a search forest F . Let (u, v) ∈ E(G) be an arc.

Definition
The arc is called a tree arc if it belongs to one of the trees of F .
If the arc is not a tree arc, there are three possibilities:

1 a forward arc if u is an ancestor of v in F ,
2 a back arc if u is a descendant of v in F , and
3 a cross arc if neither u nor v is an ancestor of the other in

F .
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Facts about traversal trees

Theorem

Suppose we run algorithm traverse on G, resulting in a search
forest F . Let v , w ∈ V (G).

1 Let T1 and T2 be different trees in F and suppose that T1
was explored before T2. Then there are no arcs from T1 to
T2.

2 Suppose that G is a graph. Then there can be no edges
joining different trees of F .

3 Suppose that v is visited before w and w is reachable from
v in G. Then v and w belong to the same tree of F .

4 Suppose that v and w belong to the same tree T in F .
Then any path from v to w in G must have all nodes in T .
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Run-time analysis of traverse

In the while-loop of subroutine visit let:
a and A be lower and upper bounds on the time to choose
a grey node.
b and B be lower and upper bounds on the time to choose
a white node.

The running time2 of traverse is:
O(An + Be) and Ω(an + be) if adjacency lists are used, and
O(An + Bn2) and Ω(an + bn2) if adjacency matrices are
used

2Recall n is the order and e is the size of G.
Michael J. Dinneen Graph Algorithms
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Depth-first-search (DFS) algorithm (part 1)

algorithm dfs
Input: digraph G

begin
stack S; array color [n], pred [n], seen[n], done[n]
for u ∈ V (G) do

color [u]←WHITE; pred [u]← NULL
end for
time← 0
for s ∈ V (G) do

if color [s] = WHITE then
dfsvisit(s)

end if
end for
return pred , seen, done

end
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Depth-first-search (DFS) algorithm (part 2)

algorithm dfsvisit
Input: node s

begin
color [s]← GREY; seen[u]← time++; S.push_top(s)
while not S.isempty() do

u ← S.get_top()
if there is a v adjacent to u and color [v ] = WHITE then

color [v ]← GREY; pred [v ]← u
seen[v ]← time++; S.push_top(v )

else
S.del_top(); color [u]← BLACK; done[u]← time++;

end if
end while

end
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Recursive view of DFS algorithm

algorithm rec_dfs_visit
Input: node s

begin
color [s]← GREY
seen[s]← time++
for each v adjacent to s do

if color [v ] = WHITE then
pred [v ]← s
rec_dfs_visit(v )

end if
end for
color [s]← BLACK
done[s]← time++

end
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A DFS example
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Basic properties of depth-first search

Each call to dfs_visit(v ) terminates only when all nodes
reachable from v via a path of white nodes have been
seen.
Suppose that (v , w) is an arc. Cases:

tree or forward arc:
seen[v ] < seen[w ] < done[w ] < done[v ];
back arc: seen[w ] < seen[v ] < done[v ] < done[w ];
cross arc: seen[w ] < done[w ] < seen[v ] < done[v ].

Hence on a graph, there are no cross edges.
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Using DFS to determine ancestors of a tree

Theorem

Suppose that we have performed DFS on a digraph G,
resulting in a search forest F . Let v , w ∈ V (G) and suppose
that seen[v ] < seen[w ].

If v is an ancestor of w in F , then

seen[v ] < seen[w ] < done[w ] < done[v ] .

If v is not an ancestor of w in F , then

seen[v ] < done[v ] < seen[w ] < done[w ] .
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Breadth-first-search (BFS) algorithm (part 1)

algorithm bfs
Input: digraph G

begin
queue Q
array color [n], pred [n], d [n]
for u ∈ V (G) do

color [u]←WHITE; pred [u]← NULL
end for
for s ∈ V (G) do

if color [s] = WHITE then
bfsvisit(s)

end if
end for
return pred , d

end
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Breadth-first-search (BFS) algorithm (part 2)

algorithm bfsvisit
Input: node s

begin
color [s]← GREY; d [s]← 0; Q.enqueue(s)
while not Q.isempty() do

u ← Q.get_head()
for each v adjacent to u do

if color [v ] = WHITE then
color [v ]← GREY; pred [v ]← u; d [v ]← d [u] + 1
Q.enqueue(v )

end if
end for
Q.dequeue(); color [u]← BLACK

end while
end
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A BFS example
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Priority-first-search (PFS) algorithm (part 1)

algorithm pfs
Input: digraph G

begin
priority queue Q;
array color [n], pred [n]
for u ∈ V (G) do

color [u]←WHITE; pred [u]← NULL
end for
for s ∈ V (G) do

if color [s] = WHITE then
pfsvisit(s)

end if
end for
return pred

end
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Priority-first-search (PFS) algorithm (part 2)

algorithm pfsvisit
Input: node s

begin
color [s]← GREY; Q.insert(s, setkey (s))
while not Q.isempty() do

u ← Q.get_min()
if v adjacent to u and color [v ] = WHITE then

color [v ]← GREY;
Q.insert(v , setkey (v))

end if
Q.del_min(); color [u]← BLACK

end while
end
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Pre-order and post-order labelings

Example
DFS allows us to give a so-called pre-order and post-order
labeling to a digraph. The pre-order label indicates the order in
which the nodes were turned grey. The post-order label
indicates the order in which the nodes were turned black.

pre/post-orders
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3/2 5/3

2/4

1/9

6/8

7/7

8/5 9/6

post-order trace
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Cycle detection

Suppose that there is a cycle in G and let v be the node in
the cycle visited first by DFS. If (u, v) is an arc in the cycle
then it must be a back arc.
Conversely if there is a back arc, we must have a cycle. So
a digraph is acyclic iff there are no back arcs from DFS.
An acyclic digraph is called a directed acyclic graph (DAG).
An acyclic graph is a forest.
Cycles can also be easily detected in a graph using BFS.
Finding a cycle of minimum length in a graph is not difficult
using BFS (better than DFS).
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Using DFS to find cycles in digraphs
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Using BFS to find cycles in graphs
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Arithmetic expression digraphs
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(a + b) ∗ (c− (a + b)) ∗ (−c + d)
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Topological sorting

To place nodes of a digraph on a line so all arcs go in one
direction. Possible if and only if digraph is a DAG.
Main application: scheduling events (arithmetic
expressions, university prerequisites, etc).
List of finishing times for depth-first search, in reverse
order, solves the problem (since there are no back arcs,
each node finishes before anything pointing to it).
Another solution: zero in-degree sorting. Find node of
in-degree zero, delete it and repeat until all nodes listed.
Less efficient(?)
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Topological sorting via DFS

cdb

a

e

f

g

h
i

j

cdb

a

e

f

g

h
i

j

1
23

4
5

6

7
8

910

cdb

a

e

f

g

h
i

j

1
23

4
5

6

7
8

910
a

f

j

e

g

h

i

d

c

b

Michael J. Dinneen Graph Algorithms



The Graph Abstract Data Type
Graph Traversals and Applications

Weighted Digraphs and Optimization Problems

General graph traversing
Depth/Breadth-first-search of digraphs
Algorithms using traversal techniques

Arithmetic expression evaluation order
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Many topological orders per DAG
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Graph connectivity

Definition
A graph G is connected if for each pair of vertices u, v ∈ V (G),
there is a path between them.

Definition
A graph G is disconnected if it is not connected and the
maximum induced connected subgraphs are call the
components of G.

Theorem

Let G be a graph and suppose that DFS or BFS is run on G.
Then the connected components of G are precisely the
subgraphs spanned by the trees in the search forest.
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Nice DFS application: strong components

Nodes v and w are mutually reachable if there is a path
from v to w and a path from w to v . The nodes of a
digraph divide up into disjoint subsets of mutually
reachable nodes, which induce strong components.
(Strong) components are precisely the equivalence
classes under the mutual reachability relation.
A digraph is strongly connected if it has only one strong
component.
Components of a graph are found easily by BFS or DFS.
However, this doesn’t work well for digraphs (a digraph
may have a connected underlying graph yet not be strongly
connected). A new idea is needed.
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A digraph’s strongly connected components
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Strong components algorithm

Run DFS on G, to get depth-first forest F . Create reverse
digraph Gr by reversing all arcs. Run DFS on Gr ; choose
root from unseen nodes finishing latest in F . This gives a
forest Fr .
Suppose v in tree of Fr with root w . Consider the four
possibilities in F :

seen[w ] < seen[v ] < done[v ] < done[w ]
seen[w ] < done[w ] < seen[v ] < done[v ]
seen[v ] < seen[w ] < done[w ] < done[v ]
seen[v ] < done[v ] < seen[w ] < done[w ]

By root choice, 2nd and 3rd impossible. By root choice and
since w reachable from v in G, 4th impossible. So v is
descendant of w in F , and v , w are in the same strong
component. The converse is easy.
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Strong connected components example
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Girth of a graph (digraph)

Definition
For a graph (with a cycle), the length of the shortest cycle is
called the girth of the graph. If the graph has no cycles then the
girth is undefined but may be viewed as +∞.

Fact
For a digraph we use the term girth for its underlying graph and
the (maybe non-standard) term directed girth for the length of
the smallest directed cycle.
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Computing girth of a graph

If vertex v is on at least one cycle then BFS starting at v
will find it.
On detection of a cross arc between descendants u and w ,
determine whether u and w are in different subtrees.

If yes, then a cycle of length d [u] + d [w ] + 1 is found.
If no, then a cycle of shorter length is found (but avoids v ).

If d [u] = d [w ] then odd length, where v common ancestor.
Otherwise, WLOG, d [u] + 1 = d [w ] and even length.
To compute girth, we run the above procedure once for
each v ∈ V (G) and take minimum.
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Bipartite graphs (digraphs)

Definition
A graph G is bipartite if V (G) can be partitioned into two
nonempty disjoint subsets V0, V1 such that each edge of G has
one endpoint in V0 and one in V1. [Similar for digraphs.]

K3,2
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k -colorable graphs

Definition
Let k be a positive integer. A graph G has a k -coloring if V (G)
can be partitioned into k nonempty disjoint subsets such that
each edge of G joins two vertices in different subsets (colors).

K3,2 K4
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Even cycles lengths

Theorem
The following conditions on a graph G are equivalent.

G is bipartite;
G has a 2-coloring;
G does not contain an odd length cycle.

Fact
A version of BFS can be used to check if a graph is bipartite
(e.g. 2-colorable).
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Weighted (di)graphs

Very common in applications, also called “networks".
Optimization problems on networks are important in
operations research.
Each arc carries a real number “weight", usually positive,
can be +∞. Weight typically represents cost, distance,
time.
Representation: weighted adjacency matrix or double
adjacency list.
Standard problems concern finding a minimum or
maximum weight path between given nodes (covered
here), spanning tree (here and CS 225), cycle or tour (e.g
TSP), matching, flow, etc.
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Single-source shortest path problem

Given an originating node v , find shortest (minimum
weight) path to each other node. If all weights are equal
then BFS works, otherwise not.
Several algorithms are known; we present one, Dijkstra’s
algorithm . An example of a greedy algorithm; locally best
choice is globally best. Doesn’t work if weights can be
negative.
Maintain list S of visited nodes (say using a priority queue).
Choose closest unvisited node u that is on a path with
internal nodes in S. Update distances (of remaining
unvisted nodes) from source in case adding u has
established shorter paths. Repeat.
Complexity depends on data structures used, especially for
priority queue; O(e + n log n) is possible.
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Dijkstra’s algorithm

algorithm Dijkstra(weighted digraph (G, c), node s ∈ V (G))
array color [n] = {WHITE, . . .} ; color [s]← BLACK
array dist [n] = {c[s, 0], . . . , c[s, n − 1]}
while there is a white node adjacent to a black node do

pick a white node u so that dist [u] is minimum
color [u]← BLACK
for x neighbor of u do

if color [x ] = WHITE then
dist [x ]← min{dist [x ], dist [u] + c[u, x ]}

end if
end for

end while
return dist

end
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Illustrating Dijkstra’s algorithm
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Why Dijkstra’s algorithm works

Let a S-path be a path starting at node s and ending at node w
with all nodes colored black except possibly w .

Fact
At the top of while loop, these properties hold for all
w ∈ V (G):
P1: dist [w ] is the minimum weight of an S-path to w.
P2: if color [w ] = BLACK, dist [w ] is the minimum weight.
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Bellman-Ford algorithm

algorithm Bellman-Ford(weighted digraph (G, c); node s)
array dist [n] = {∞, . . .}
dist [s]← 0
for i from 0 to n − 1 do

for x ∈ V (G) do
for v ∈ V (G) do

dist [v ]← min(dist [v ], dist [x ] + c(x , v))
end for

end for
end for
return dist

end
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Illustrating Bellman-Ford’s algorithm
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Comments on Bellman-Ford algorithm

Fact
This (non-greedy) algorithm handles negative weight arcs
but not negative weight cycles.
Runs slower than Dijkstra’s algoirthm since considers all
nodes at “level” 0, 1, . . . , n − 1, in turn.
Runs in time O(ne) since the two inner-most for loops can
be replaced with: for (u, v) ∈ E(V ).
Can be modified to detect negative weight cycle.
(see Exercise 6.3.4)
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All pairs shortest path problem

Several algorithms are known; we present one, Floyd’s
algorithm. Alternative to running Dijkstra from each node.
Number nodes (say from 0 to n − 1) and at each step k ,
maintain matrix of shortest distances from node i to node j
not passing through nodes higher than k . Update at each
step to see whether node k shortens current best distance.
Need triply nested for loop, so runs in O(n3) time. Better
than Dijkstra for dense graphs, probably not for sparse
ones.
Based on Warshall’s algorithm (just tells whether there is a
path from nod e i to node j , not concerned with length).
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Floyd’s algorithm

algorithm Floyd(weighted digraph (G, c))
for x ∈ V (G) do

for u ∈ V (G) do
for v ∈ V (G) do

c[u, v ]← min{c[u, v ], c[u, x ] + c[x , v ]}

This algorithm is based on dynamic programming principles.
At the bottom of the outer for loop, for each u, v ∈ V (G),
c[u, v ] is the length of the shortest path from u to v passing
through intermediate nodes that have been seen in for x loop.
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Illustrating Floyd’s algorithm
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Minimum spanning tree problem

Given a connected weighted graph, find a spanning tree
(subgraph containing all vertices that is a tree) of minimum
total weight. Many obvious applications.
Two efficient greedy algorithms presented here: Prim’s and
Kruskal’s.
Each selects edges in order of increasing weight but
avoids creating a cycle.
Prim maintains a tree at each stage that grows to span;
Kruskal maintains a forest whose trees coalesce into one
spanning tree.
Prim implementation very similar to Dijkstra, get
O(e + n log n); Kruskal uses disjoint sets ADT and can be
implemented to run in time O(e log n).
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Prim’s algorithm

algorithm Prim(weighted graph (G, c), vertex s)
array w [n] = {c[s, 0], c[s, 1], . . . , c[s, n − 1]}
S ← {s} first vertex added to MST
while S 6= V (G) do

find u ∈ V (G) \ S so that w [u] is minimum
S ← S ∪ {u} adding an edge adjacent to u to MST
for x ∈ V (G) \ S do

w [x ]← min{w [x ], c[u, x ]}
end while

Very similar to Dijkstra—should use a priority queue for
selection of best edge weights w [. . .]. Most time taken by
EXTRACT-MIN and DECREASE-KEY operations.
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Illustrating Prim’s algorithm
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Kruskal’s algorithm

algorithm Kruskal(weighted graph (G, c))
T ← ∅
insert E(G) into a priority queue
for e = {u, v} ∈ E(G) in increasing order of weight do

if u and v are not in the same tree then
T ← T ∪ {e}
merge the trees of u and v

end if
end for

Keep track of the trees using disjoint sets ADT, with standard
operations FIND and UNION. They can be implemented
efficiently so that the main time taken is the sorting step.
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Illustrating Kruskal’s algorithm
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Minimum spanning tree (MST) summary

Can you prove these two facts?

Fact
1 The most expensive edge, if unique, of a cycle in an

edge-weighted graph G is not in any MST.
(Otherwise, at least one of those equally expensive edges
of the cycle must not be in each MST.)

2 The minimum cost edge, if unique, between any non-empty
strict subset S of V (G) and the V (G) \ S is in the MST.
(Otherwise, at least one of these minimum cost edges is in
each MST.)
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Other (di)graph optimization/decision problems

There are many more graph and network computational
problems.

Many do not have easy or polynomial-time solutions.
However a few of them are in a special category in that
their solutions can be varified in polynomial-time (NP).
In addition, many of these are proven to be harder than
anything else in NP (NP-complete).
Other algorithm design techniques like backtracking,
branch-and-bound or approximation algoirthms are
needed (which are covered in CompSci 320).
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Examples of NP-complete graph problems (part 1)

Vertex Cover: Is there a subset of k vertices such that
every edge is covered?
Hamiltonian Path: Is there a path using all vertices?
Dominating Set: Is there a subset D of k vertices such that
each vertex is in the neighborhood (distance ≤ 1) of D?
Feedback Arc Set: Is there a subset F of k nodes such
that G \ F is a DAG?
Maximum Clique: Is there an induced subgraph of order k
which is complete?
Maximum Cut: Can the vertices of G be partitioned into
two non-empty sets V1 and V2 such that the cost of the
“cut” is at most k?
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Examples of NP-complete graph problems (part 2)

Induced Path: Is there an induced subgraph of order k
which is a simple path?
Bandwidth: Is there a linear ordering of V with bandwidth k
or less? (each edge spans at most k vertices)
Subgraph Isomorphism: Is H a sub(di)graph of G?
Minimum Broadcast Time: Given an originating node for a
digraph G, can we (point-to-point) broadcast to all other
nodes in at most k time steps?
Traveling Salesman: Is there a cycle of length |G| in an
edge-weighted graph G that costs at most c?
Disjoint Connecting Paths: Given k pairs of source and
sink vertices for a graph G, is there k vertex-disjoint paths
connecting each pair?
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Thank you!
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