THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2006 Campus: City

COMPUTER SCIENCE

Algorithms and Data Structures

(Time allowed: TWO hours)

NOTE: Attempt *all* questions!

Put the answers in the boxes below the questions.

Marks for each question are shown just before each answer box.

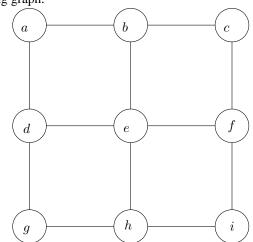
Use of calculators is NOT permitted.

Section:	Α	B	C	Total
Possible marks:	25	30	45	100
Awarded marks:				

SURNAME:

FORENAME(S):

STUDENT ID:


QUESTION/ANSWER SHEET	2	COMPSCI 220SC
Student Name:	Student ID:	

Section A: Analysis of algorithms

1.

Section B: Graph algorithms

2. Consider the following graph.

(a) What is the order of the graph?

[1 mark]

[1 mark]

[1 mark]

	,	Q	_			
			9	9	9	9

(b) What is the size of the graph?

(c) What is the degree of vertex *a* of the graph?

2

4

4

(d) What is the diameter of the graph?

[2 marks]

[2 marks]

(e) What is the girth of the graph?

QUESTION/ANSWER SHEET

4

[2 marks]

[2 marks]

Student Name: ______Student ID: _____

(f) What is the radius of the graph?

	2
--	---

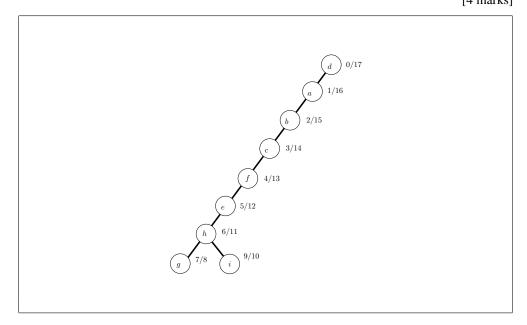
(g) Write the adjacency matrix representation of this graph.

9 – optional order of graph 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1

 $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0$

(h) Write the adjacency lists representation of this graph.

[2 marks]


a: b d			
b: a c e			
c: b f			
d: a e g			
e: b d f h			
f: c e i			
g: d h			
h: e g i			
i: f h			

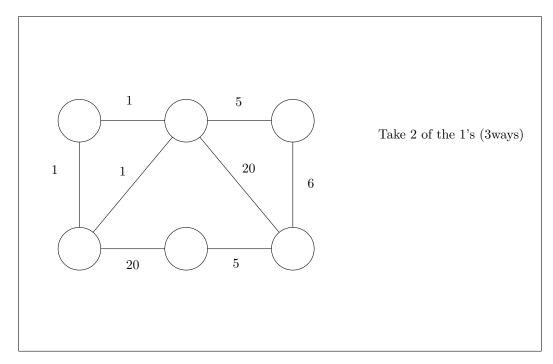
Student Name: ____

__Student ID: ____

- a e gb f hc i
- (i) Illustrate BFS on the graph starting from vertex d and draw the BFS tree (on the side), with the usual rule that when faced with a choice we take the lowest labeled vertex. [4 marks]

(j) Illustrate DFS on the graph and draw the DFS tree (with seen/done times) starting from vertex d, with the usual rule that when faced with a choice we take the lowest labeled vertex. [4 marks]

QUESTION/ANSWER SHEET	6	COMPSCI 220SC
Student Name:	Student ID:	

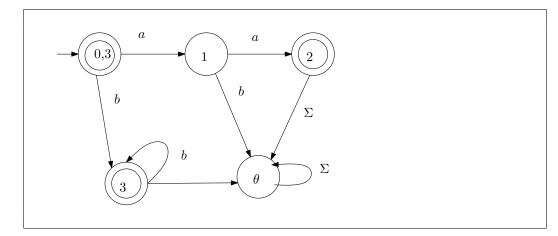

- 4 712 \mathbf{b} $^{\mathrm{a}}$ \mathbf{c} 3 58 6 0 13 $\mathbf{2}$ 8 6f \mathbf{e} \mathbf{d} 10
- 3. Consider the following edge-weighted digraph.

Illustrate Dijkstra's single-source shortest paths algorithm starting from node *a* by filling out the remaining entries of the following table. [6 marks]

Black nodes	Distance to nodes (from node <i>a</i>)						
S	a	b	c	d	e	f	
a	0	7	4	13	8	∞	
	0	7	4	13	6		
a, c		1	4	15	U	∞	
a, c, e	0	6	4	12	6	14	
a,c,e,b	0	6	4	11	6	14	
a, c, e, b, d	0	6	4	11	6	14	
a, c, e, o, a		0	4	11	0	14	
a, c, e, b, d, f	0	6	4	11	6	14	


4. Give an example of a edge-weighted graph with 6 vertices, 8 edges and exactly three different minimum spanning trees of cost 18. Justify your answer. [3 marks]

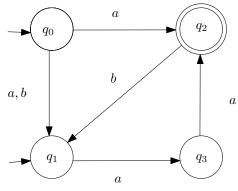
QUESTION/ANSWER SHEET	8	COMPSCI 220SC
Student Name:	Student ID:	


Section C: Automata and Formal Languages

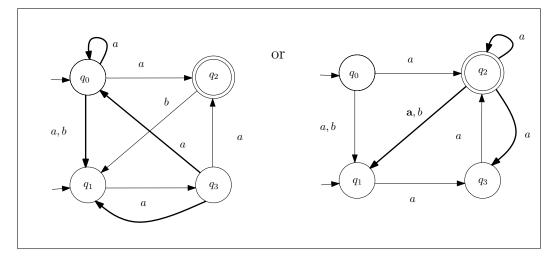
5. Give a NFA with 4 states (which isn't a DFA) that accepts the language $aa|b^*$. [5 marks]

6. Convert the NFA from Question 5 to a DFA.

```
[6 marks]
```

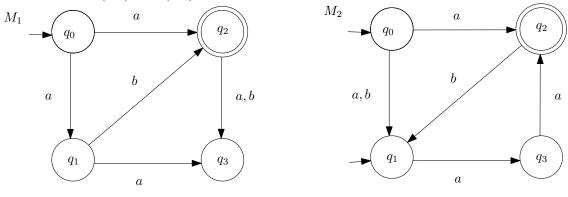


7. Minimize (or prove it already is minimum) the DFA from Question 6.

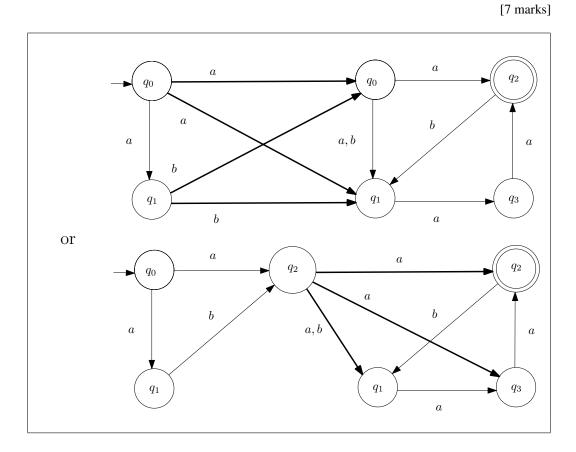
[7 marks]


It is minimum. Suffices to distinguish the three accepting states and two non-accepting states. The string *a* distinguishes state 1 from the dead state θ . The string *aa* distinguishes state 0, 3 from the other accepting states. Lastly, string *b* distinguishes state 3 from state 2.

QUESTION/ANSWER SHEET	9	COMPSCI 220SC
Student Name:	Student ID:	

- 8. Give a regular expression that represents all character strings over $\Sigma = \{0, 1\}$ that represent the set of even binary numbers $\{0, 10, 100, 110, 1000, \ldots\}$. (Note that we do not want strings with leading zeros, except for the one representing 0.) [5 marks]
 - $0 \mid 1(0 \mid 1)^* 0$
- 9. Build a NFA, using the technique given in class, that accepts the closure of the language accepted by the following automaton.





Student Name: ____

__Student ID: ___

10. Build a NFA, using the technique given in class, that accepts the language represented by concatenation of $L(M_1)$ and $L(M_2)$.

QUESTION/ANSWER SHEET 11 COMPSCI 220SC Student Name: ____Student ID: _____

11. Let L_1 and L_2 be two languages accepted by DFA M_1 and M_2 . Explain how you would build a DFA M that accepts the language $L_2 \setminus L_1$. [8 marks]

$$L_2 \setminus L_1 = L_2 \cap \overline{L_1} = \overline{\overline{L_2} \cup L_1}$$

- 1. Build DFA M_3 for $\overline{L_2}$. (swap accept/reject states) 2. Build NFA M_4 for $\overline{L_2} \cup L_1$.
- 3. Convert M_4 to DFA M_5 .
- 4. Build DFA M from M_5 . (swap accept/reject states)