THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2005 Campus: City	

COMPUTER SCIENCE

Algorithms and Data Structures

(Time allowed: TWO hours)

NOTE:

Attempt all questions. Write answers in the boxes below the questions. You may use the "extra page" provided at the back if necessary for rough working only. Marks for each question are shown below the answer box. The use of calculators is NOT permitted.

SURNAME:	
FORENAME(S):	
STUDENT ID:	

Section:	A	В	С	Total
Possible marks:	35	45	40	120
Awarded marks:				

UESTION/ANSWER	SHEET	2	COMPSCI 220
ırname:			
rename(s):			
. ,			
	A. Algori	thm Analysis	
	B. quickselect E. selection sort H. mergesort	rith its description. Write the letter ext to the description. Algorithms/da C. median-of-3 pivoting strategy F. open addressing with double hashi I. interpolation search L. open addressing with linear probin O. binary search tree	ata structures are:
Can easily becor	ne unbalanced, hence the	need for rotations.	
Runs in linear tii	me on average, quadratic	in worst case.	
Runs in $O(n \log$	n) time on average, quad	ratic in worst case.	
First nontrivial a	lgorithm analysed by Kn	uth.	
Often finds an er	ntry in a sorted list in $O(1$	$\log \log n$) time.	
Reduces likeliho	od of quadratic performa	nce of quicksort.	
A simple algorit	hm whose analysis is very	y difficult.	
Best sorting met	hod if swaps are VERY e	xpensive.	
Search operation	is faster on average than	for AVL trees.	
The only choice	for searching linked lists		
A clever array in	nplementation of the prio	rity queue ADT.	
In-place, stable,	quadratic sorting method		
Less prone to pri	imary clustering.		
A stable $n \log n$	sorting method.		
The best sorting	choice when speed is ess	ential and storage is VERY small.	
			[15 marks]
	estions concern nonnegat n true (T) or false (F).	ive functions f, g defined on the natu	_
(a) If $f(n) = n^2$	$g^{2}, g(n) = (1 + (-1)^{n})n,$	then g is $O(f)$.	
(b) If $f(n) = n$,	$g(n) = (1 + (-1)^n)n^2,$	then g is $\Omega(f)$.	
(c) If $f(n) = n^2$	$\log_4 n, g(n) = (5n^2 + 1)$	$(\log n + \log \log n)$ then f is $\Theta(g)$.	
(d) There exist j	f and g such that f is $O(g)$	$g(g)$ and g is $O(f)$ but f is not $\Theta(g)$.	
(e) $f + g$ is $\Theta(r)$	$\max\{f, q\}$).		

[5 marks]

Surname:	
Forename(s):	

3. In the textbook it is shown that the average running time T(n) for quicksort satisfies the recurrence

$$T(n) = (2/n) \sum_{i=0}^{n-1} T(i) + cn, \text{ for } n \ge 1,$$

while the analogous quantity U(n) for quickselect satisfies

$$T(n) = (1/n) \sum_{i=0}^{n-1} T(i) + cn, \text{ for } n \ge 1,$$

(a) Solve each of the recurrences above explicitly assuming T(0)=U(0)=0.

[10 marks]

4

QUESTION/ANSWER SHEET

[5 marks]

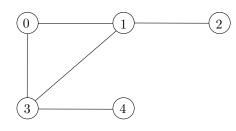
COMPSCI 220

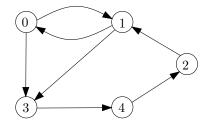
Surname:			
Forename(s):			

B. Graph Algorithms

4. Solve the following crossword puzzle on graph terminology.

Across. 5 procedure to compute something 6 number of nodes 9 sequence of unique nodes following arcs 10 for graphs, equivalent to 2-colorable 12 ADT with nodes and arcs 14 type of order for nodes of a DAG 15 closed walk with distinct arcs 17 connected graph without cycles 19 subset of a graph that is also a graph 20 type of search yielding no cross edges 21 connects vertices 22 first 220 textbook author

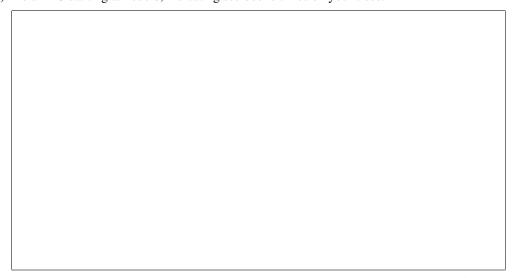

Down. 1 maximum of minimum path lengths 2 smallest cycle length 3 having path between every pair of vertices 4 ADT with vertices and edges 7 systematic way to visit each node 8 type of search used to find diameter 11 sequence of adjacent nodes 12 number of neighbors 13 assigning numbers to edges 16 Dijkstra's paths 18 sum of all degrees 19 number of arcs


[15 marks]

[5 marks]

Surname:		
Forename(s):		

6. For the following graph \mathcal{G}_1 and digraph \mathcal{G}_2 answer the following questions.



(a) Give adjacency lists for G_1 and adjacency matrix for G_2 .

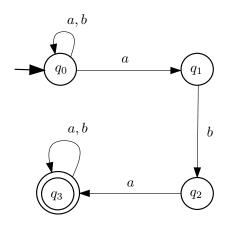
[5 marks]

(b) Do a DFS starting at node 0, indicating seen/done times on your trees.

[5 marks]

8

QUESTION/ANSWER SHEET


[5 marks]

COMPSCI 220

Surname:		
r ()		

C. Automata and Formal Languages

7. Consider the following NFA N:

(a)	Find the minimal (in length) string $x \in \{a,b\}^*$ accepted by N and write a trace of computing $x \in \{a,b\}^*$	uta-
	on which accepts x in N .	

[4 marks]

(b) Find the minimal (in length) string $x \in \{a, b\}^*$ not accepted by N.

- 0	

[4 marks]

[10 marks]

[2 marks]