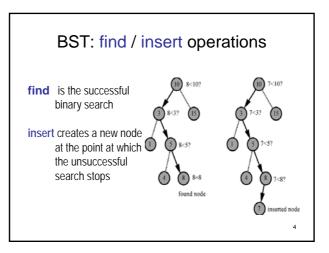


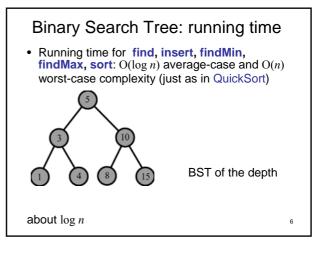
Binary Search Tree No duplicates! (attach them all to a single item)

- Basic operations:
 - find: find a given search key or detect that it is not present in the tree
 - insert: insert a node with a given **key** to the tree if it is not found
 - findMin: find the minimum key
 - findMax: find the maximum key
 - remove: remove a node with a given key and restore the tree if necessary

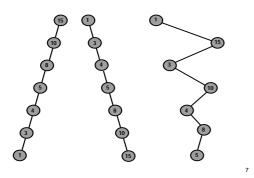


Binary Search Trees: findMin / findMax / sort

- Extremely simple: starting at the root, branch repeatedly left (findMin) or right (findMax) as long as a corresponding child exists
- The root of the tree plays a role of the pivot in quickSort
- As in QuickSort, the recursive traversal of the tree can sort the items:
 - First visit the left subtree
 - Then visit the root
 - Then visit the right subtree



BST of the depth about n



Binary Search Tree: node removal

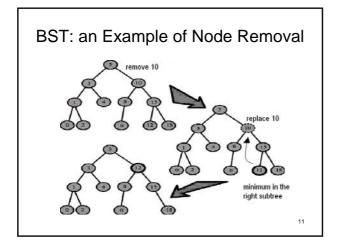
- remove is the most complex operation:
 - The removal may disconnect parts of the tree
 - The reattachment of the tree must maintain the binary search tree property
 - The reattachment should not make the tree unnecessarily deeper as the depth specifies the running time of the tree operations

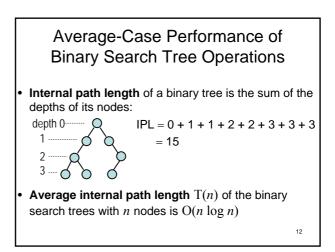
BST: how to remove a node If the node k to be removed is a leaf, delete it

- If the node *k* has only one child, remove it after linking its child to its parent node
- Thus, removeMin and removeMax are not complex because the affected nodes are either leaves or have only one child

BST: how to remove a node

- If the node k to be removed has two children, then replace the item in this node with the item with the **smallest** key in the **right** subtree and remove this latter node from the right subtree (*Exercise:* if possible, how can the nodes in the left subtree be used instead?)
- The second removal is very simple as the node with the smallest key does not have a left child
- The smallest node is easily found as in findMin





Average-Case Performance of Binary Search Tree Operations

• If the *n*-node tree contains the root, the *i*-node left subtree, and the (*n*-*i*-1)-node right subtree, then:

T(n) = n - 1 + T(i) + T(n-i-1)because the root contributes 1 to the path length of each of the other n - 1 nodes

 Averaging over all *i*; 0 ≤ *i* < *n*: the same recurrence as for QuickSort: T(*n*) = (*n*-1) + ²/_{*n*}(T(0) + T(1) + ... + T(*n*-1)) so that T(*n*) is O(*n* log *n*)

13

15

Average-Case Performance of Binary Search Tree Operations

- Therefore, the average complexity of find or insert operations is T(n)/n = O(log n)
- For *n*² pairs of random **insert / remove** operations, an expected depth is O(*n*^{0.5})
- In practice, for random input, all operations are about O(log *n*) but the worst-case performance can be O(*n*)!

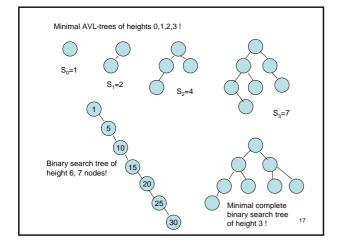
Balanced Trees

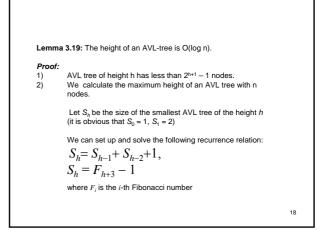
- Balancing ensures that the internal path lengths are close to the optimal $n \log n$
- The average-case and the worst-case complexity is about $O(\log n)$ due to their balanced structure
- But, insert and remove operations take more time on average than for the standard binary search trees
 - AVL tree (1962: Adelson-Velskii, Landis)
 - Red-black and AA-tree
 - B-tree (1972: Bayer, McCreight)

AVL Tree

- An AVL tree is a binary search tree with the following additional balance property:
 - for any node in the tree, the height of the left and right subtrees can differ by at most 1
 the height of an empty subtree is -1
- The AVL-balance guarantees that the AVL tree of height h has at least c^h nodes, c > 1, and the maximum depth of an n-item tree is about log, n

16





$$S_{h} = S_{h-1} + S_{h-2} + 1,$$

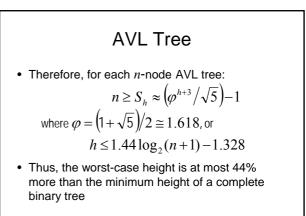
$$S_{h} = F_{h+3} - 1$$

Proof by mathematical induction:

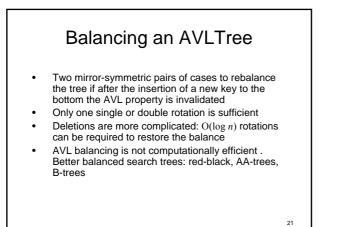
1) Base case: $S_0=F_3-1=1, S_1=F_4-1=2$

2) Assumption: S_i=F_{i+3}-1

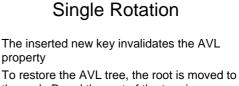
3) Proof: $S_{i+1}=(F_{i+3}-1)+(F_{i+2}-1)+1=F_{i+4}-1$



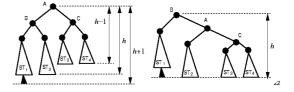
20

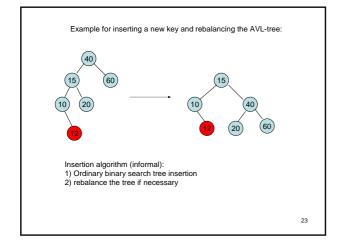


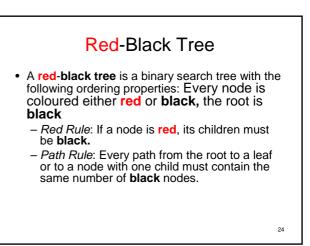
19

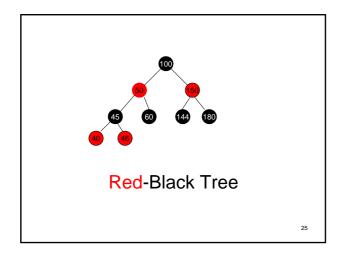


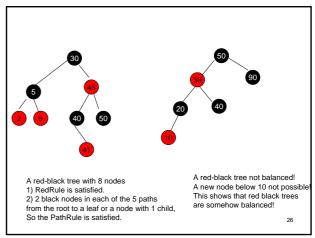
the node B and the rest of the tree is reorganised as the BST

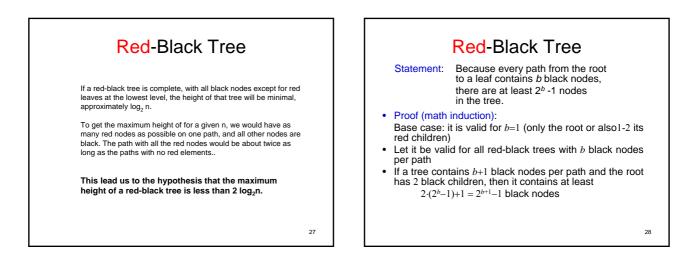


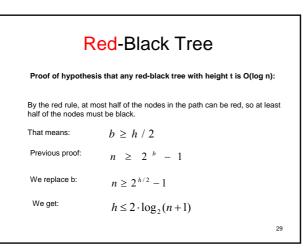


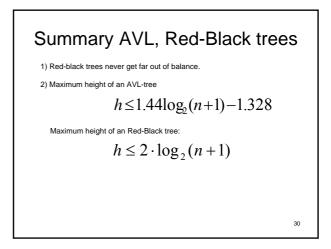












AA-Trees

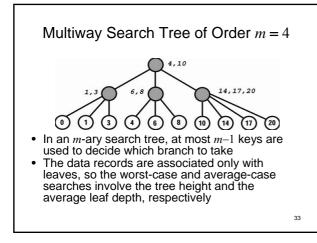
- Software implementation of the operations insert and remove for red-black trees is a rather tricky process
- A balanced search AA-tree is a method of choice if deletions are needed
- The AA-tree adds one extra condition to the redblack tree: left children may not be red
- This condition greatly simplifies the red-black tree remove operation

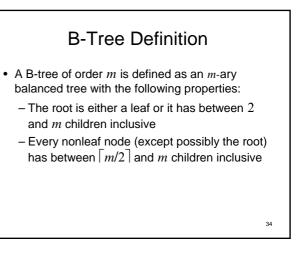
31

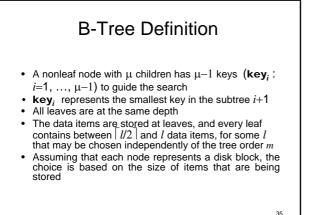
B-Trees: Efficient External Search

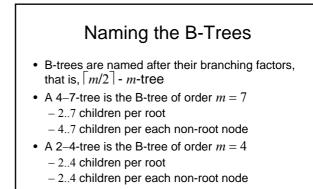
- For very big databases, even log₂n search steps may be unacceptable
- To reduce the number of disk accesses: an optimal *m*-ary search tree of height about log_mn
 - *m*-way branching lowers the optimal tree height by factor $\log_2 m$ (i.e., by 3.3 if m=10)

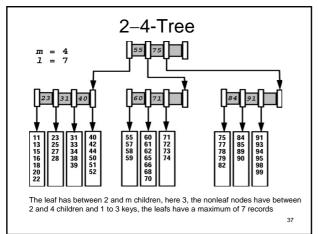
ning mal	п	105	106	107	108	109
	$\lceil \log_2 n \rceil$	17	20	24	27	30
ctor	$\lceil \log_{10} n \rceil$	5	6	7	8	9
.3 if	$\lceil \log_{100} n \rceil$	3	3	4	4	5
	$\lceil \log_{1000} n \rceil$	2	2	3	3	3
						32

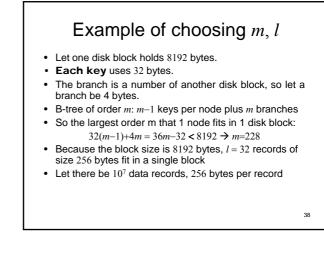












Example of choosing m, l

- Each leaf has between 16..32 data records inclusive, and each internal node, except from the root, branches in 114 228 ways
- 10⁷ records can be stored in 312500 625000 leaves (= 10⁷ / (16 .. 32))
- In the worst case the leaves would be on the level 4 (114² = 12996 < 625,000 < 114³ = 1481544)

Analysis of B-Trees

- A search or an insertion in a B-tree of order *m* with *n* data items requires fewer than ⌈log_mn⌉ disk accesses
- In practice, $\lceil \log_m n \rceil$ is almost constant as long as *m* is not small
- Data insertion is simple until the corresponding leaf is not already full; then it must be split into 2 leaves, and the parent(s) should be updated

Analysis of B-Trees

- Additional disk writes for data insertion and deletion are extremely rare
- An algorithm analysis beyond the scope of this course shows that both insertions, deletions, and retrievals of data have only $\log_{m/2}n$ disk accesses in the worst case (e.g., $\lceil \log_{114} 625000 \rceil = 3$ in the above example)

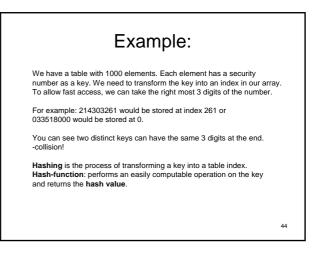
41

39

Symbol Table and Hashing

- A (symbol) table is a set of table entries, (K,V)
- Each entry contains:
 a unique key, K, and
 a value (information), V
- Each key uniquely identifies its entry
- 42

Country NZ USA German	State DC						
USA							
German							
Comu	ıy						
UK	Scotland						
China							
s USA	California						
k=26 ² c _o +26c ₁ +c ₂ c ₀ , c ₁ , c ₂ are the integer codes for the English alphabet, 0-A, 1-B, 2-C, 3							
A table is a mapping of keys to values.							
6	China S USA	China China SUSA California e integer codes for the English					



Symbol Table and Hashing

- Once the entry (*K*,*V*) is found, its value *V*, may be updated, it may be retrieved, or the entire entry, (*K*,*V*), may be removed from the table
- If no entry with key *K* exists in the table, a new table entry having *K* as its key may be inserted in the table
- Hashing is a technique of storing values in the tables and searching for them in linear, O(n), worst-case and extremely fast, O(1), average-case time

Basic Features of Hashing

- Hashing computes an integer, called the hash code, for each object (key)
- The computation, called the hash function, h(K), maps objects (e.g., keys K) to the array indices (e.g., 0, 1, ..., i_{max})
- An object having a key value *K* should be stored at location h(*K*), and the hash function must always return a valid index for the array

Basic Features of Hashing

- A perfect hash function produces a different index value for every key. But such a function cannot be always found.
- Collision: if two distinct keys, K₁ ≠ K₂, map to the same table address, h(K₁) = h(K₂)
- Collision resolution policy: how to find additional storage in which to store one of the collided table entries

47

45

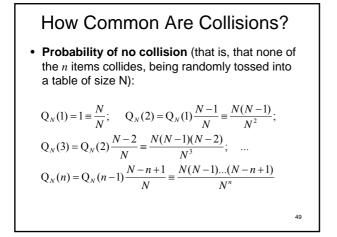
How Common Are Collisions?

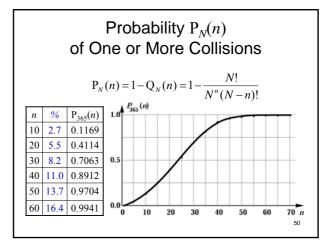
• Von Mises Birthday Paradox:

if there are more than 23 people in a room, the chance is greater than 50% that two or more of them will have the same birthday

• Thus, in the table that is only 6.3% full (since 23/365 = 0.063) there is a "good" chance of a collision!

48





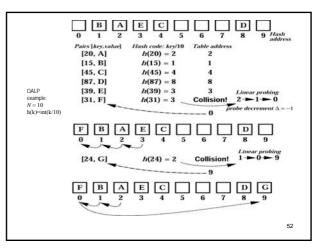
Open Addressing with Linear Probing (OALP) • The simplest collision resolution policy:

- to successively search for the first empty entry at a lower location
- if no such entry, then ``wrap around" the table

51

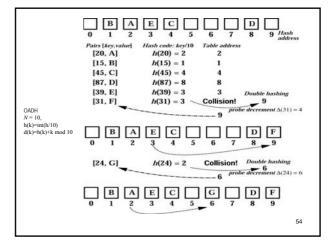
53

• Drawbacks: clustering of keys in the table



Open Addressing with Double Hashing (OADH)

- Better collision resolution policy reducing the likelihood of clustering:
 - to hash the collided key again using a different hash function and
 - to use the result of the second hashing as an increment for probing table locations (including wraparound)



Two More Collision Resolution Techniques

- Open addressing has a problem when significant number of items need to be deleted as logically deleted items must remain in the table until the table can be reorganised
- Two techniques to attenuate this drawback:
 - Chaining
 - Hash bucket

55

Chaining and Hash Bucket

- Chaining: all keys collided at a single hash address are placed on a linked list, or chain, started at that address
- Hash bucket: a big hash table is divided into a number of small sub-tables, or buckets
 - the hush function maps a key into one of the buckets
 - the keys are stored in each bucket sequentially in increasing order

56

58

Choosing a hash function

- Four basic methods: division, folding, middlesquaring, and truncation
- Division:
 - choose a prime number as the table size N
 - convert keys, K, into integers
 - use the remainder $h(K) = K \mod N$ as a hash value of the key *K*
 - find a double hashing decrement using the quotient,

 $\Delta K = \max\{1, (K/N) \mod N\}$

Choosing a hash function

• Folding:

- divide the integer key, K, into sections
- add, subtract, and/or multiply them together for combining into the final value, h(K)
- Example: *K*=013402122 → sections 013, 402, 122 → h(*K*) = 013 + 402 + 122 = 537

Choosing a hash function

• Middle-squaring:

- choose a middle section of the integer key, K
- square the chosen section
- use a middle section of the result as h(K)
- Example: $K = 013402122 \rightarrow \text{middle: } 402 \rightarrow 402^2 = 161404 \rightarrow \text{middle: } h(K) = 6140$

59

57

Choosing a hash function

• Truncation:

- delete part of the key, K- use the remaining digits (bits, characters) as h(K)

• Example:

- $K=013402122 \rightarrow \text{last } 3 \text{ digits: } h(K) = 122$
- Notice that truncation does not spread keys uniformly into the table; thus it is often used in conjunction with other methods

Universal Class by Division

- Theorem (universal class of hash functions by division):
 - Let the size of a key set, K, be a prime number:

 $|\mathbf{K}| = M$

- Let the members of K be regarded as the integers {0,...,*M*-1}
- For any numbers $a \in \{1, ..., M-1\}; b \in \{0, ..., M-1\}$ 1} let $\mathbf{h}_{a,b}(k) = ((a \cdot k + b) \mod M) \mod N$

61

Table ADT Representations: Comparative Performance

Operation	Representation				
	Sorted array	AVL tree	Hash table		
Initialize	O(N)	O(1)	O(<i>N</i>)		
Is full?	O(1)	O(1)	O(1)		
Search*)	$O(\log N)$	$O(\log N)$	O(1)		
Insert	O(N)	$O(\log N)$	O(1)		
Delete	O(N)	$O(\log N)$	O(1)		
Enumerate	O(<i>N</i>)	O(<i>N</i>)	O(<i>N</i> log <i>N</i>)**)		

*) also: Retrieve, Update **)To enumerate a hash table, entries must first be sorted in ascending order of keys that takes $O(N \log N)$ time ⁶²