
1

1

Binary Search Tree
• BST converts a static binary search into a

dynamic binary search allowing to efficiently
insert and delete data items

• Left-to-right ordering in a tree: for every node
x, the values of all the keys kleft in the left
subtree are smaller than the key kparent in x and
the values of all the keys kright in the right
subtree are larger than the key in x:

kparentx
krightkleft

kleft < kparent < kright

2

Binary Search Tree
Compare the left−right ordering in a binary search tree to the
bottom−up ordering in a heap where the key of each parent
node is greater than or equal to the key of any child node

3

Binary Search Tree

• No duplicates! (attach them all to a single
item)

• Basic operations:
– find: find a given search key or detect that it

is not present in the tree
– insert: insert a node with a given key to the

tree if it is not found
– findMin: find the minimum key
– findMax: find the maximum key
– remove: remove a node with a given key

and restore the tree if necessary
4

BST: find / insert operations

find is the successful
binary search

insert creates a new node
at the point at which
the unsuccessful
search stops

5

Binary Search Trees:
findMin / findMax / sort

• Extremely simple: starting at the root, branch
repeatedly left (findMin) or right (findMax) as
long as a corresponding child exists

• The root of the tree plays a role of the pivot in
quickSort

• As in QuickSort, the recursive traversal of the
tree can sort the items:
– First visit the left subtree
– Then visit the root
– Then visit the right subtree

6

Binary Search Tree: running time
• Running time for find, insert, findMin,

findMax, sort: O(log n) average-case and O(n)
worst-case complexity (just as in QuickSort)

BST of the depth

about log n

2

7

BST of the depth about n

15

10

10

15

8

5

1

8

5

4

4

3

3

1 1

15

10

4

8

3

5

8

Binary Search Tree: node removal

• remove is the most complex operation:
– The removal may disconnect parts of the tree
– The reattachment of the tree must maintain

the binary search tree property
– The reattachment should not make the tree

unnecessarily deeper as the depth specifies
the running time of the tree operations

9

BST: how to remove a node

• If the node k to be removed is a leaf, delete it
• If the node k has only one child, remove it after

linking its child to its parent node
• Thus, removeMin and removeMax are not

complex because the affected nodes are either
leaves or have only one child

10

BST: how to remove a node

• If the node k to be removed has two children,
then replace the item in this node with the item
with the smallest key in the right subtree and
remove this latter node from the right subtree
(Exercise: if possible, how can the nodes in the
left subtree be used instead?)

• The second removal is very simple as the node
with the smallest key does not have a left child

• The smallest node is easily found as in findMin

11

BST: an Example of Node Removal

12

Average-Case Performance of
Binary Search Tree Operations

• Internal path length of a binary tree is the sum of the
depths of its nodes:

IPL = 0 + 1 + 1 + 2 + 2 + 3 + 3 + 3
= 15

• Average internal path length T(n) of the binary
search trees with n nodes is O(n log n)

depth 0
1
2
3

3

13

Average-Case Performance of
Binary Search Tree Operations

• If the n-node tree contains the root, the i-node
left subtree, and the (n−i−1)-node right subtree,
then:

T(n) = n − 1 + T(i) + T(n−i−1)
because the root contributes 1 to the path

length of each of the other n − 1 nodes
• Averaging over all i; 0 ≤ i < n: the same

recurrence as for QuickSort:

so that T(n) is O(n log n)
())1T(...)1T()0T()1()T(2 −++++−= nnn n

14

Average-Case Performance of
Binary Search Tree Operations

• Therefore, the average complexity of find or
insert operations is T(n) ⁄ n = O(log n)

• For n2 pairs of random insert / remove
operations, an expected depth is O(n0.5)

• In practice, for random input, all operations are
about O(log n) but the worst-case performance
can be O(n)!

15

Balanced Trees
• Balancing ensures that the internal path lengths

are close to the optimal n log n
• The average-case and the worst-case

complexity is about O(log n) due to their
balanced structure

• But, insert and remove operations take more
time on average than for the standard binary
search trees
– AVL tree (1962: Adelson-Velskii, Landis)
– Red-black and AA-tree
– B-tree (1972: Bayer, McCreight)

16

AVL Tree

• An AVL tree is a binary search tree with the
following additional balance property:
– for any node in the tree, the height of the left

and right subtrees can differ by at most 1
– the height of an empty subtree is −1

• The AVL-balance guarantees that the AVL tree
of height h has at least ch nodes, c > 1, and the
maximum depth of an n-item tree is about logcn

17

S0=1

S1=2
S2=4

S3=7

Minimal AVL-trees of heights 0,1,2,3 !

30

25

20

15

10

5

Binary search tree of
height 6, 7 nodes!

1

Minimal complete
binary search tree
of height 3 ! 18

Lemma 3.19: The height of an AVL-tree is O(log n).

Proof:
1) AVL tree of height h has less than 2h+1 – 1 nodes.
2) We calculate the maximum height of an AVL tree with n

nodes.

Let Sh be the size of the smallest AVL tree of the height h
(it is obvious that S0 = 1, S1 = 2)

We can set up and solve the following recurrence relation:

Sh= Sh−1+ Sh−2+1,
Sh = Fh+3 − 1
where Fi is the i-th Fibonacci number

4

19

Proof by mathematical induction:

1) Base case: S0=F3-1=1, S1=F4-1=2

2) Assumption: Si=Fi+3-1

3) Proof: Si+1=(Fi+3-1)+(Fi+2-1)+1=Fi+4-1

Definition-Fibonacci number: F(n)=F(n-1)+F(n-2),
Fi is ith Fibonacci number,
F1=1, F2=1, F3=2
F4=F2+F3

Sh= Sh−1+ Sh−2+1,
Sh = Fh+3 − 1

20

AVL Tree

• Therefore, for each n-node AVL tree:

• Thus, the worst-case height is at most 44%
more than the minimum height of a complete
binary tree

()
()

328.1)1(log44.1
618.12

15

2

3

−+≤
≅+=

−≈≥ +

nh

Sn h
h

orwhere ,51 ϕ
ϕ

21

Balancing an AVLTree

• Two mirror-symmetric pairs of cases to rebalance
the tree if after the insertion of a new key to the
bottom the AVL property is invalidated

• Only one single or double rotation is sufficient
• Deletions are more complicated: O(log n) rotations

can be required to restore the balance
• AVL balancing is not computationally efficient .

Better balanced search trees: red-black, AA-trees,
B-trees

22

Single Rotation

• The inserted new key invalidates the AVL
property

• To restore the AVL tree, the root is moved to
the node B and the rest of the tree is
reorganised as the BST

23

40

60

12

2010

15

602012

4010

15

Example for inserting a new key and rebalancing the AVL-tree:

Insertion algorithm (informal):
1) Ordinary binary search tree insertion
2) rebalance the tree if necessary

24

Red-Black Tree
• A red-black tree is a binary search tree with the

following ordering properties: Every node is
coloured either red or black, the root is
black
– Red Rule: If a node is red, its children must

be black.
– Path Rule: Every path from the root to a leaf

or to a node with one child must contain the
same number of black nodes.

5

25

144

4640

1806045

50 150

100

Red-Black Tree

26

5040

5

30

41

45

92

A red-black tree with 8 nodes
1) RedRule is satisfied.
2) 2 black nodes in each of the 5 paths
from the root to a leaf or a node with 1 child,
So the PathRule is satisfied.

50

40

30

10

20

90

A red-black tree not balanced!
A new node below 10 not possible!
This shows that red black trees
are somehow balanced!

27

If a red-black tree is complete, with all black nodes except for red
leaves at the lowest level, the height of that tree will be minimal,
approximately log2 n.

To get the maximum height of for a given n, we would have as
many red nodes as possible on one path, and all other nodes are
black. The path with all the red nodes would be about twice as
long as the paths with no red elements..

This lead us to the hypothesis that the maximum
height of a red-black tree is less than 2 log2n.

Red-Black Tree

28

Red-Black Tree

• Proof (math induction):
Base case: it is valid for b=1 (only the root or also1-2 its
red children)

• Let it be valid for all red-black trees with b black nodes
per path

• If a tree contains b+1 black nodes per path and the root
has 2 black children, then it contains at least

2⋅(2b−1)+1 = 2b+1−1 black nodes

Statement: Because every path from the root
to a leaf contains b black nodes,
there are at least 2b -1 nodes
in the tree.

29

Red-Black Tree
Proof of hypothesis that any red-black tree with height t is O(log n):

By the red rule, at most half of the nodes in the path can be red, so at least
half of the nodes must be black.

That means: 2/hb ≥

Previous proof: 12 −≥ bn

We replace b: 12 2/ −≥ hn

We get:)1(log2 2 +⋅≤ nh

30

Summary AVL, Red-Black trees
1) Red-black trees never get far out of balance.

2) Maximum height of an AVL-tree

328.1)1(log44.1 2 −+≤ nh
Maximum height of an Red-Black tree:

)1(log2 2 +⋅≤ nh

6

31

AA-Trees

• Software implementation of the operations insert
and remove for red-black trees is a rather tricky
process

• A balanced search AA-tree is a method of
choice if deletions are needed

• The AA-tree adds one extra condition to the red-
black tree: left children may not be red

• This condition greatly simplifies the red-black
tree remove operation

32

B-Trees: Efficient External Search

• For very big databases, even log2n search steps
may be unacceptable

• To reduce the number of disk accesses: an
optimal m-ary search tree of height about logmn

33322⎡log1000n⎤
54433⎡log100n⎤
98765⎡log10n⎤

3027242017⎡log2n⎤
109108107106105n

m-way branching
lowers the optimal
tree height by factor
log2 m (i.e., by 3.3 if
m=10)

33

Multiway Search Tree of Order m = 4

• In an m-ary search tree, at most m−1 keys are
used to decide which branch to take

• The data records are associated only with
leaves, so the worst-case and average-case
searches involve the tree height and the
average leaf depth, respectively

34

B-Tree Definition

• A B-tree of order m is defined as an m-ary
balanced tree with the following properties:
– The root is either a leaf or it has between 2

and m children inclusive
– Every nonleaf node (except possibly the root)

has between ⎡m/2⎤ and m children inclusive

35

B-Tree Definition

• A nonleaf node with µ children has µ−1 keys (keyi :
i=1, …, µ−1) to guide the search

• keyi represents the smallest key in the subtree i+1
• All leaves are at the same depth
• The data items are stored at leaves, and every leaf

contains between ⎡l/2⎤ and l data items, for some l
that may be chosen independently of the tree order m

• Assuming that each node represents a disk block, the
choice is based on the size of items that are being
stored

36

Naming the B-Trees
• B-trees are named after their branching factors,

that is, ⎡m/2⎤ - m-tree
• A 4−7-tree is the B-tree of order m = 7

– 2..7 children per root
– 4..7 children per each non-root node

• A 2−4-tree is the B-tree of order m = 4
– 2..4 children per root
– 2..4 children per each non-root node

7

37

2−4-Tree

The leaf has between 2 and m children, here 3, the nonleaf nodes have between
2 and 4 children and 1 to 3 keys, the leafs have a maximum of 7 records

38

Example of choosing m, l
• Let one disk block holds 8192 bytes.
• Each key uses 32 bytes.
• The branch is a number of another disk block, so let a

branch be 4 bytes.
• B-tree of order m: m−1 keys per node plus m branches
• So the largest order m that 1 node fits in 1 disk block:

32(m−1)+4m = 36m−32 < 8192 m=228
• Because the block size is 8192 bytes, l = 32 records of

size 256 bytes fit in a single block
• Let there be 107 data records, 256 bytes per record

39

Example of choosing m, l

• Each leaf has between 16..32 data records
inclusive, and each internal node, except from
the root, branches in 114 – 228 ways

• 107 records can be stored in 312500 − 625000
leaves (= 107 / (16 .. 32))

• In the worst case the leaves would be on the
level 4 (1142 = 12996 < 625,000 < 1143 = 1481544)

40

Analysis of B-Trees

• A search or an insertion in a B-tree of order m
with n data items requires fewer than ⎡logmn⎤
disk accesses

• In practice, ⎡logmn⎤ is almost constant as long
as m is not small

• Data insertion is simple until the corresponding
leaf is not already full; then it must be split into 2
leaves, and the parent(s) should be updated

41

Analysis of B-Trees

• Additional disk writes for data insertion and
deletion are extremely rare

• An algorithm analysis beyond the scope of this
course shows that both insertions, deletions, and
retrievals of data have only logm/2n disk accesses
in the worst case (e.g., ⎡log114625000⎤ = 3 in the
above example)

42

Symbol Table and Hashing

• A (symbol) table is a set of table entries,
(K,V)

• Each entry contains:
– a unique key, K, and
– a value (information), V

• Each key uniquely identifies its entry

8

43

Los Angeles USA CaliforniaLAX 7459

Hong Kong ChinaHKG 4998

Glasgow UK ScotlandGLA 4342

Frankfurt GermanyFRA 3822

Washington USA DCDCA 2080

Auckland NZ AKL 271

Associated value V
City Country State

Key K
Code k

k=262co+26c1+c2,

A table is a mapping of keys to values.

c0, c1, c2 are the integer codes for the English
alphabet, 0-A, 1-B, 2-C, 3…….

44

Example:
We have a table with 1000 elements. Each element has a security
number as a key. We need to transform the key into an index in our array.
To allow fast access, we can take the right most 3 digits of the number.

For example: 214303261 would be stored at index 261 or
033518000 would be stored at 0.

You can see two distinct keys can have the same 3 digits at the end.
-collision!

Hashing is the process of transforming a key into a table index.
Hash-function: performs an easily computable operation on the key
and returns the hash value.

45

Symbol Table and Hashing

• Once the entry (K,V) is found, its value V, may
be updated, it may be retrieved, or the entire
entry, (K,V) , may be removed from the table

• If no entry with key K exists in the table, a new
table entry having K as its key may be inserted
in the table

• Hashing is a technique of storing values in the
tables and searching for them in linear, O(n),
worst-case and extremely fast, O(1), average-
case time

46

Basic Features of Hashing
• Hashing computes an integer, called the hash

code, for each object (key)
• The computation, called the hash function, h(K),

maps objects (e.g., keys K) to the array indices
(e.g., 0, 1, …, imax)

• An object having a key value K should be stored
at location h(K), and the hash function must
always return a valid index for the array

47

Basic Features of Hashing

• A perfect hash function produces a different
index value for every key. But such a function
cannot be always found.

• Collision: if two distinct keys, K1 ≠ K2, map to
the same table address, h(K1) = h(K2)

• Collision resolution policy: how to find
additional storage in which to store one of the
collided table entries

48

How Common Are Collisions?

• Von Mises Birthday Paradox:
if there are more than 23 people in a room,

the chance is greater than 50% that two or more
of them will have the same birthday

• Thus, in the table that is only 6.3% full (since
23/365 = 0.063) there is a “good” chance of a
collision!

9

49

How Common Are Collisions?
• Probability of no collision (that is, that none of

the n items collides, being randomly tossed into
a table of size N):

nNN

NN

NNN

N
nNNN

N
nNnn

N
NNN

N
N

N
NN

N
N

N
N

)1)...(1(1)1(Q)(Q

... ;)2)(1(2)2(Q)3(Q

;)1(1)1(Q)2(Q ;1)1(Q

3

2

+−−
≡

+−
−=

−−
≡

−
=

−
≡

−
=≡=

50

Probability PN(n)
of One or More Collisions

)!(
!1)(Q1)(P

nNN
Nnn nNN −

−=−=

16.4

13.7
11.0
8.2
5.5
2.7
%

0.994160

0.970450
0.891240
0.706330
0.411420
0.116910
P365(n)n

51

Open Addressing
with Linear Probing (OALP)

• The simplest collision resolution policy:
– to successively search for the first empty entry

at a lower location
– if no such entry, then ``wrap around'' the table

• Drawbacks: clustering of keys in the table

52

OALP
example:
N = 10
h(k)=int(k/10)

53

Open Addressing
with Double Hashing (OADH)

• Better collision resolution policy reducing the
likelihood of clustering:
– to hash the collided key again using a

different hash function and
– to use the result of the second hashing as an

increment for probing table locations
(including wraparound)

54

OADH
N = 10,
h(k)=int(h/10)
d(k)=h(k)+k mod 10

10

55

Two More Collision Resolution
Techniques

• Open addressing has a problem when
significant number of items need to be deleted
as logically deleted items must remain in the
table until the table can be reorganised

• Two techniques to attenuate this drawback:
– Chaining
– Hash bucket

56

Chaining and Hash Bucket

• Chaining: all keys collided at a single hash
address are placed on a linked list, or chain,
started at that address

• Hash bucket: a big hash table is divided into a
number of small sub-tables, or buckets
– the hush function maps a key into one of the

buckets
– the keys are stored in each bucket

sequentially in increasing order

57

Choosing a hash function
• Four basic methods: division, folding, middle-

squaring, and truncation
• Division:

– choose a prime number as the table size N
– convert keys, K, into integers
– use the remainder h(K) = K mod N as a hash

value of the key K
– find a double hashing decrement using the

quotient,
∆K = max{1, (K/N)mod N}

58

Choosing a hash function

• Folding:
– divide the integer key, K, into sections
– add, subtract, and/or multiply them together

for combining into the final value, h(K)
• Example:

K=013402122 sections 013, 402, 122
h(K) = 013 + 402 + 122 = 537

59

Choosing a hash function

• Middle-squaring:
– choose a middle section of the integer key, K
– square the chosen section
– use a middle section of the result as h(K)

• Example:
K = 013402122 middle: 402
4022=161404 middle: h(K) = 6140

60

Choosing a hash function

• Truncation:
– delete part of the key, K
– use the remaining digits (bits, characters) as

h(K)
• Example:

K=013402122 last 3 digits: h(K) = 122
• Notice that truncation does not spread keys

uniformly into the table; thus it is often used in
conjunction with other methods

11

61

Universal Class by Division

• Theorem (universal class of hash functions by
division):
– Let the size of a key set, K, be a prime

number:
|K| = M

– Let the members of K be regarded as the
integers {0,…,M−1}

– For any numbers a∈{1,…,M-1}; b∈ {0,…,M−
1} let

() NMbkakba modmod)()(h , +⋅=
62

Table ADT Representations:
Comparative Performance

O(N log N)**)O(N) O(N) Enumerate
O(1)O(log N) O(N) Delete

O(log N)
O(log N)

O(1)
O(1)

AVL tree

O(1) O(N) Insert
O(1)O(log N) Search*)

O(1) O(1) Is full?
O(N) O(N) Initialize

Hash tableSorted
array

RepresentationOperation

*) also: Retrieve, Update **)To enumerate a hash table, entries must
first be sorted in ascending order of keys that takes O(N log N) time

