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Binary Search Tree
• BST converts a static binary search into a 

dynamic binary search allowing to efficiently 
insert and delete data items

• Left-to-right ordering in a tree: for every node 
x, the values of all the keys kleft in the left 
subtree are smaller than the key kparent in x and 
the values of all the keys kright in the right 
subtree are larger than the key in x:

kparentx
krightkleft

kleft < kparent < kright
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Binary Search Tree
Compare the left−right ordering in a binary search tree to the 
bottom−up ordering in a heap where the key of each parent 
node is greater than or equal to the key of any child node

3

Binary Search Tree

• No duplicates! (attach them all to a single 
item) 

• Basic operations:
– find: find a given search key or detect that it 

is not present in the tree
– insert: insert a node with a given key to the 

tree if it is not found
– findMin: find the minimum key
– findMax: find the maximum key
– remove: remove a node with a given key 

and restore the tree if necessary
4

BST: find / insert operations

find is the successful 
binary search

insert creates a new node    
at the point at which   
the unsuccessful 
search stops
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Binary Search Trees: 
findMin / findMax / sort

• Extremely simple: starting at the root, branch 
repeatedly left (findMin) or right (findMax) as 
long as a corresponding child exists

• The root of the tree plays a role of the pivot in 
quickSort

• As in QuickSort, the recursive traversal of the 
tree can sort the items:
– First visit the left subtree
– Then visit the root
– Then visit the right subtree
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Binary Search Tree: running time 
• Running time for  find, insert, findMin, 

findMax, sort: O(log n) average-case and O(n)
worst-case complexity (just as in QuickSort)

BST of the depth 

about log n
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Binary Search Tree: node removal

• remove is the most complex operation:
– The removal may disconnect parts of the tree
– The reattachment of the tree must maintain 

the binary search tree property
– The reattachment should not make the tree 

unnecessarily deeper as the depth specifies 
the running time of the tree operations 
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BST: how to remove a node

• If the node k to be removed is a leaf, delete it
• If the node k has only one child, remove it after 

linking its child to its parent node 
• Thus, removeMin and removeMax are not 

complex because the affected nodes are either 
leaves or have only one child
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BST: how to remove a node

• If the node k to be removed has two children, 
then replace the item in this node with the item 
with the smallest key in the right subtree and 
remove this latter node from the right subtree
(Exercise: if possible, how can the nodes in the 
left subtree be used instead? )

• The second removal is very simple as the node 
with the smallest key does not have a left child

• The smallest node is easily found as in findMin
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BST: an Example of Node Removal 
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Average-Case Performance of 
Binary Search Tree Operations

• Internal path length of a binary tree is the sum of the 
depths of its nodes:

IPL = 0 + 1 + 1 + 2 + 2 + 3 + 3 + 3
= 15

• Average internal path length T(n) of the binary 
search trees with n nodes is O(n log n)

depth 0
1
2
3
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Average-Case Performance of 
Binary Search Tree Operations

• If the n-node tree contains the root, the i-node 
left subtree, and the (n−i−1)-node right subtree, 
then:

T(n) = n − 1 + T(i) + T(n−i−1)
because the root contributes 1 to the path 

length of each of the other n − 1 nodes
• Averaging over all i; 0 ≤ i < n: the same 

recurrence as for QuickSort:

so that T(n) is O(n log n)
( ))1T(...)1T()0T()1()T( 2 −++++−= nnn n
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Average-Case Performance of 
Binary Search Tree Operations

• Therefore, the average complexity of find or 
insert operations is T(n) ⁄ n = O(log n)

• For n2 pairs of random  insert / remove
operations, an expected depth is O(n0.5)

• In practice, for random input, all operations are 
about O(log n) but the worst-case performance 
can be O(n)!

15

Balanced Trees
• Balancing ensures that the internal path lengths 

are close to the optimal n log n
• The average-case and the worst-case 

complexity is about O(log n) due to their 
balanced structure 

• But, insert and remove operations take more 
time on average than for the standard binary 
search trees
– AVL tree (1962: Adelson-Velskii, Landis) 
– Red-black and AA-tree
– B-tree (1972: Bayer, McCreight)
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AVL Tree

• An AVL tree is a binary search tree with the 
following additional balance property:
– for any node in the tree, the height of the left 

and right subtrees can differ by at most 1
– the height of an empty subtree is −1

• The AVL-balance guarantees that the AVL tree 
of height h has at least ch nodes, c > 1, and the 
maximum depth of an n-item tree is about logcn
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S0=1

S1=2
S2=4

S3=7

Minimal AVL-trees of heights 0,1,2,3 !
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Binary search tree of 
height 6, 7 nodes!

1

Minimal complete 
binary search tree 
of height 3 ! 18

Lemma 3.19: The height of an AVL-tree is O(log n). 

Proof:
1) AVL tree of height h has less than 2h+1 – 1 nodes.
2) We  calculate the maximum height of an AVL tree with n 

nodes.

Let Sh be the size of the smallest AVL tree of the height h
(it is obvious that S0 = 1, S1 = 2)

We can set up and solve the following recurrence relation:

Sh= Sh−1+ Sh−2+1,
Sh = Fh+3 − 1
where Fi is the i-th Fibonacci number
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Proof by mathematical induction:

1) Base case:   S0=F3-1=1, S1=F4-1=2

2) Assumption: Si=Fi+3-1

3) Proof: Si+1=(Fi+3-1)+(Fi+2-1)+1=Fi+4-1

Definition-Fibonacci number: F(n)=F(n-1)+F(n-2), 
Fi is ith Fibonacci number,
F1=1, F2=1, F3=2
F4=F2+F3

Sh= Sh−1+ Sh−2+1,
Sh = Fh+3 − 1
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AVL Tree 

• Therefore, for each n-node AVL tree:

• Thus, the worst-case height is at most 44% 
more than the minimum height of a complete 
binary tree

( )
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Balancing an AVLTree

• Two mirror-symmetric pairs of cases to rebalance 
the tree if after the insertion of a new key to the 
bottom the AVL property is invalidated

• Only one single or double rotation is sufficient
• Deletions are more complicated: O(log n) rotations 

can be required to restore the balance
• AVL balancing is not computationally efficient . 

Better balanced search trees: red-black, AA-trees, 
B-trees  
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Single Rotation

• The inserted new key invalidates the AVL 
property

• To restore the AVL tree, the root is moved to 
the node B and the rest of the tree is
reorganised as the BST
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Example for inserting a new key and rebalancing the AVL-tree: 

Insertion algorithm (informal):
1) Ordinary binary search tree insertion
2) rebalance the tree if necessary
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Red-Black Tree
• A red-black tree is a binary search tree with the 

following ordering properties: Every node is 
coloured either red or black, the root is 
black
– Red Rule: If a node is red, its children must 

be black.
– Path Rule: Every path from the root to a leaf 

or to a node with one child must contain the 
same number of black nodes.
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Red-Black Tree
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A red-black tree with 8 nodes
1) RedRule is satisfied.
2) 2 black nodes in each of the 5 paths
from the root to a leaf or a node with 1 child,
So the PathRule is satisfied. 
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A red-black tree not balanced!
A new node below 10 not possible!
This shows that red black trees 
are somehow balanced!
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If a red-black tree is complete, with all black nodes except for red 
leaves at the lowest level, the height of that tree will be minimal, 
approximately log2 n.

To get the maximum height of for a given n, we would have as 
many red nodes as possible on one path, and all other nodes are
black. The path with all the red nodes would be about twice as
long as the paths with no red elements.. 

This lead us to the hypothesis that the maximum 
height of a red-black tree is less than 2 log2n. 

Red-Black Tree
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Red-Black Tree

• Proof (math induction):
Base case: it is valid for b=1 (only the root or also1-2 its  
red children)

• Let it be valid for all red-black trees with b black nodes 
per path

• If a tree contains b+1 black nodes per path and the root 
has 2 black children, then it contains at least 

2⋅(2b−1)+1 = 2b+1−1 black nodes

Statement: Because every path from the root 
to a leaf contains b black nodes, 
there are at least 2b -1 nodes 
in the tree. 
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Red-Black Tree
Proof of hypothesis that any red-black tree with height t is O(log n):

By the red rule, at most half of the nodes in the path can be red, so at least
half of the nodes must be black. 

That means: 2/hb ≥

Previous proof: 12 −≥ bn

We replace b: 12 2/ −≥ hn

We get: )1(log2 2 +⋅≤ nh

30

Summary AVL, Red-Black trees
1) Red-black trees never get far out of balance. 

2) Maximum height of an AVL-tree 

328.1)1(log44.1 2 −+≤ nh
Maximum height of an Red-Black tree:

)1(log2 2 +⋅≤ nh
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AA-Trees

• Software implementation of the operations insert
and remove for red-black trees is a rather tricky 
process 

• A balanced search AA-tree is a method of 
choice if deletions are needed

• The AA-tree adds one extra condition to the red-
black tree: left children may not be red 

• This condition greatly simplifies the red-black 
tree remove operation

32

B-Trees: Efficient External Search

• For very big databases, even log2n search steps 
may be unacceptable

• To reduce the number of disk accesses: an 
optimal m-ary search tree of height about logmn

33322⎡log1000n⎤
54433⎡log100n⎤
98765⎡log10n⎤

3027242017⎡log2n⎤
109108107106105n

m-way branching  
lowers the optimal 
tree height by factor 
log2 m (i.e., by 3.3 if 
m=10)
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Multiway Search Tree of Order m = 4

• In an m-ary search tree, at most m−1 keys are 
used to decide which branch to take

• The data records are associated only with 
leaves, so the worst-case and average-case 
searches involve the tree height and the 
average leaf depth, respectively
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B-Tree Definition

• A B-tree of order m is defined as an m-ary
balanced tree with the following properties:
– The root is either a leaf or it has between 2

and m children inclusive
– Every nonleaf node (except possibly the root) 

has between ⎡m/2⎤ and m children inclusive
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B-Tree Definition

• A nonleaf node with µ children has µ−1 keys  (keyi :
i=1, …, µ−1) to guide the search

• keyi represents the smallest key in the subtree i+1
• All leaves are at the same depth
• The data items are stored at leaves, and every leaf 

contains between ⎡l/2⎤ and l data items, for some l
that may be chosen independently of the tree order m

• Assuming that each node represents a disk block, the 
choice is based on the size of items that are being 
stored

36

Naming the B-Trees
• B-trees are named after their branching factors, 

that is, ⎡m/2⎤ - m-tree
• A 4−7-tree is the B-tree of order m = 7

– 2..7 children per root 
– 4..7 children per each non-root node

• A 2−4-tree is the B-tree of order m = 4
– 2..4 children per root
– 2..4 children per each non-root node
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2−4-Tree

The leaf has between 2 and m children, here 3, the nonleaf nodes have between 
2 and 4 children and 1 to 3 keys, the leafs have a maximum of 7 records

38

Example of choosing m, l
• Let one disk block holds 8192 bytes.
• Each key uses 32 bytes.
• The branch is a number of another disk block, so let a 

branch be 4 bytes. 
• B-tree of order m: m−1 keys per node plus m branches
• So the largest order m that 1 node fits in 1 disk block:

32(m−1)+4m = 36m−32 < 8192 m=228
• Because the block size is 8192 bytes, l = 32 records of 

size 256 bytes fit in a single block 
• Let there be 107 data records, 256 bytes per record 
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Example of choosing m, l

• Each leaf has between 16..32 data records 
inclusive, and each internal node, except from 
the root, branches in 114 – 228 ways

• 107 records can be stored in 312500 − 625000
leaves (= 107 / (16 .. 32))

• In the worst case the leaves would be on the 
level 4 (1142 = 12996 < 625,000 < 1143 = 1481544)
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Analysis of B-Trees     

• A search or an insertion in a B-tree of order m
with n data items requires fewer than ⎡logmn⎤
disk accesses

• In practice, ⎡logmn⎤ is almost constant as long 
as m is not small

• Data insertion is simple until the corresponding 
leaf is not already full; then it must be split into 2 
leaves, and the parent(s) should be updated
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Analysis of B-Trees     

• Additional disk writes for data insertion and 
deletion are extremely rare 

• An algorithm analysis beyond the scope of this 
course shows that both insertions, deletions, and 
retrievals of data have only logm/2n disk accesses 
in the worst case (e.g., ⎡log114625000⎤ = 3 in the 
above example)
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Symbol Table and Hashing

• A ( symbol) table is a set of  table entries, 
(K,V)

• Each entry contains:
– a unique  key, K, and 
– a  value (information), V

• Each key uniquely identifies its entry 
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Los Angeles     USA          CaliforniaLAX      7459

Hong Kong       ChinaHKG     4998

Glasgow           UK            ScotlandGLA      4342    

Frankfurt          GermanyFRA      3822

Washington     USA           DCDCA      2080

Auckland         NZ  AKL         271

Associated value V
City                 Country       State

Key K
Code           k

k=262co+26c1+c2, 

A table is a mapping of keys to values. 

c0, c1, c2 are the integer codes for the English 
alphabet, 0-A, 1-B, 2-C, 3…….
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Example:
We have a table with 1000 elements. Each element has a security 
number as a key. We need to transform the key into an index in our array. 
To allow fast access, we can take the right most 3 digits of the number. 

For example: 214303261 would be stored at index 261 or 
033518000 would be stored at 0. 

You can see two distinct keys can have the same 3 digits at the end. 
-collision!

Hashing is the process of transforming a key into a table index. 
Hash-function: performs an easily computable operation on the key  
and returns the hash value.

45

Symbol Table and Hashing

• Once the entry (K,V) is found, its value V, may 
be updated, it may be retrieved, or the entire 
entry, (K,V) , may be removed from the table  

• If no entry with key K exists in the table, a new 
table entry having K as its key may be inserted 
in the table 

• Hashing is a technique of storing values in the 
tables and searching for them in linear, O(n), 
worst-case and extremely fast, O(1), average-
case time
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Basic Features of Hashing
• Hashing computes an integer, called the hash 

code, for each object (key)
• The computation, called the hash function, h(K), 

maps objects (e.g., keys K) to the array indices 
(e.g., 0, 1, …, imax)

• An object having a key value K should be stored 
at location h(K), and the hash function must 
always return a valid index for the array
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Basic Features of Hashing

• A perfect hash function produces a different 
index value for every key. But such a function 
cannot be always found.

• Collision: if two distinct keys, K1 ≠ K2, map to 
the same table address, h(K1) = h(K2)

• Collision resolution policy: how to find 
additional storage in which to store one of the 
collided table entries

48

How Common Are Collisions?

• Von Mises Birthday Paradox:
if there are more than 23 people in a room, 

the chance is greater than 50% that two or more 
of them will have the same birthday

• Thus, in the table that is only 6.3% full (since 
23/365 = 0.063) there is a “good” chance of a 
collision!
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How Common Are Collisions?
• Probability of no collision (that is, that none of 

the n items collides, being randomly tossed into 
a table of size N):
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Probability PN(n)
of One or More Collisions

)!(
!1)(Q1)(P

nNN
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16.4

13.7
11.0
8.2
5.5
2.7
%

0.994160

0.970450
0.891240
0.706330
0.411420
0.116910
P365(n)n
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Open Addressing 
with Linear Probing (OALP)

• The simplest collision resolution policy: 
– to successively search for the first empty entry 

at a lower location 
– if no such entry, then ``wrap around'' the table

• Drawbacks: clustering of keys in the table

52

OALP 
example:
N = 10
h(k)=int(k/10)

53

Open Addressing 
with Double Hashing (OADH)

• Better collision resolution policy reducing the 
likelihood of clustering: 
– to hash the collided key again using a 

different hash function and 
– to use the result of the second hashing as an 

increment for probing table locations 
(including wraparound)

54

OADH 
N = 10,
h(k)=int(h/10)
d(k)=h(k)+k mod 10
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Two More Collision Resolution 
Techniques

• Open addressing has a problem when 
significant number of items need to be deleted 
as logically deleted items must remain in the 
table until the table can be reorganised

• Two techniques to attenuate this drawback: 
– Chaining
– Hash bucket 

56

Chaining and Hash Bucket

• Chaining: all keys collided at a single hash 
address are placed on a linked list, or chain, 
started at that address

• Hash bucket: a big hash table is divided into a 
number of small sub-tables, or buckets
– the hush function maps a key into one of the 

buckets
– the keys are stored in each bucket 

sequentially in increasing order 
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Choosing a hash function
• Four basic methods:  division,  folding, middle-

squaring, and truncation
• Division: 

– choose a prime number as the table size N
– convert keys, K, into integers
– use the remainder h(K) = K mod N as a hash 

value of the key K
– find a double hashing decrement using the 

quotient, 
∆K = max{1, (K/N)mod N} 
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Choosing a hash function

• Folding:
– divide the integer key, K, into sections 
– add, subtract, and/or multiply them together 

for combining into the final value, h(K)
• Example:

K=013402122 sections 013, 402, 122 
h(K) = 013 + 402 + 122 = 537 
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Choosing a hash function   

• Middle-squaring:
– choose a middle section of the integer key, K
– square the chosen section
– use a middle section of the result as h(K)

• Example: 
K = 013402122  middle: 402  
4022=161404  middle: h(K) = 6140

60

Choosing a hash function   

• Truncation:
– delete part of the key, K
– use the remaining digits (bits, characters) as 

h(K)
• Example: 

K=013402122 last 3 digits: h(K) = 122
• Notice that truncation does not spread keys 

uniformly into the table; thus it is often used in 
conjunction with other methods
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Universal Class by Division

• Theorem (universal class of hash functions by 
division): 
– Let the size of a key set, K, be a prime 

number: 
|K| = M

– Let the members of K be regarded as the 
integers {0,…,M−1}

– For any numbers a∈{1,…,M-1}; b∈ {0,…,M−
1} let

( ) NMbkakba modmod)()(h , +⋅=
62

Table ADT Representations: 
Comparative Performance

O(N log N)**)O(N)  O(N)  Enumerate  
O(1)O(log N)  O(N)  Delete  

O(log N)  
O(log N)  

O(1)  
O(1)  

AVL tree

O(1)  O(N)  Insert  
O(1)O(log N)  Search*)

O(1)  O(1)  Is full?    
O(N)  O(N)  Initialize

Hash tableSorted 
array

RepresentationOperation 

*) also: Retrieve, Update **)To enumerate a hash table, entries must 
first be sorted in ascending order of keys that takes O(N log N) time


