Algorithm MergeSort

» John von Neumann (7945!): a recursive
divide-and-conquer approach

* Three basic steps:
— If the number of items is 0 or 1, return

— Recursively sort the first and the second
halves separately

— Merge two presorted halves into a sorted
array

* Linear time merging O(n) yields MergeSort
time complexity O(n log n)

O(n) Merge of Sorted Arrays

if a[pointera] < b[pointerb] then  c[pointerc] < a[pointera];
pointera« pointera + 1;
pointerc— pointerc + 1
else c[pointerc] «— b[pointerb];
pointerb« pointerb + 1;
pointerc— pointerc + 1
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Structure of MergeSort

begin MergeSort (an integer array a of size n)
1. Allocate a temporary array tmp of size n

2. RecursiveMergeSort( a, tmp,0,n—-1)
end MergeSort

Temporary array: to merge each successive pair
of ordered subarrays a[left], ..., a[centre] and
a[centre+1, ..., a[right] and copy the merged
array back to a[left], ..., a[right]

Recursive MergeSort

begin RecursiveMergeSort (an integer array a of
size n; a temporary array tmp of size n; range: left,
right )
if left < right then centre « | (left+right) /,, |
RecursiveMergeSort( a, tmp, left, centre );
RecursiveMergeSort( a, tmp, centre + 1, right );
Merge( a, tmp, left, centre + 1, right );
end if
end RecursiveMergeSort

How MergeSort works
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Analysis of mergeSort

+ O(n log n) best-, average-, and worst-case
complexity because the merging is always
linear

—Extra O(n) temporary array for merging data

—Extra work for copying to the temporary array
and back

» Useful only for external sorting

* For internal sorting: QuickSort and HeapSort
are much better




Algorithm QuickSort

« C. AL R. Hoare (1961): the divide-and-conquer
approach
* Four basic steps:
—Ifn=0o0r1, return
— Pick a pivot item
— Partition the remaining items into the left and right
groups with the items that are smaller or greater
than the pivot, respectively
— Return the QuickSort result for the left group,
followed by the pivot, followed by the QuickSort
result for the right group

Recursive QuickSort

« T(n) = c:n (pivot positioning) + T(i) + T(n — 1 — i)

|
Partitioning: a[0],...,a[n—1]

a[*]<pivot | a[]> pivot
]

a[o0],...,afi-1]:

afi+1],...,a[n-1]:

RecursiveQuickSort RecursiveQuickSort

Analysis of QuickSort:
the worst case O(n?)

« If the pivot happens to be the largest (or
smallest) item, then one group is always empty
and the second group contains all the items but
the pivot

» Time for partitioning an array: c-n

* Running time for sorting: T(N) =T(n—1) +cn

“Telescoping” (recall the basic recurrences):
n(n+1)

T(n)=c-

Analysis of QuickSort:
the average case O(n log n)

+ The left and right groups containiandn—1—i
items, respectively; i=0, ..., n—1
» Time for partitioning an array: c-n
» Average running time for sorting:
T(N)=2(T(0)+...+ T(N—2)+T(N—1))+cn, or
NT(N) =2(T(0)+...+ T(N—2)+T(n—1))+cn’
(n—l)T(n—l)=2(T(O)+...+T(n—2)) +c(n-1)°
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Analysis of QuickSort:
the average case O(n log n)
nT(n) — (n-1)T(n-1) = nT(n) = (n+1)T(n-1) +2cn

" Telescopin g": () = T(n-1) + 2¢
n+1 n n+1

Explicit form:m:m+2c l+l+l+...+L
n+1 1 2 3 4 n+1

~2cH,, ~Clogn
where H =1+1+1+ . +1xInn+0.577

. th .
isthe N™ harmonic number

Analysis of QuickSort:
the choice of the pivot
* Never use the first a[low] or the last a[high]
item!
» A reasonable choice is the middle item:

a{middle = Llow+2h|ghﬂ

where | z|is an integer “floor” of the real value z
* Good choice is the median of three:
a[low], a[middle], a[high]




Pivot positioning in QuickSort:
low=0 , middle=4, high=9

Data to be sorted Description
0|1|2|3|4|5|6]|7]|8]9 |cIndices
258 |2 (91]70|50|20|31|15]65]Initial array a
258 | 2 [91]65(50|20|31|15 |70 |i=MedianOfThree(a,low,high
2508 |2 (91]15(50|20(31|65|70 ,p:a[i]; swap( i, afhigh-1])
25|18 |2 |91|15|50|20|31|65|70| i | j |Condition
8 31 1| 7 |a[il< p>al[j]; i++
2 31 2| 7 |ail< p>a[j]; i++
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Pivot positioning in QuickSort:
low=0, middle=4, high=9

2518 |2|91|15(50|20{31|65|70| i | j |Condition
91 31|65 3|7 |afi]2p>aljl;
31 91 swap; i++; j—
15 20 65 4 | 6 |a[il< p>al[j]; i++
50 (20 65 5| 6 |afil<p>alj]; i++
20 65 6 | 6 |afil<p>alj]; i++
65 7|6 |i>]; break
25| 8|2 |31|15|50|20 65|91 |70 |swap(a[i], p = a[high-11)
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Data selection: QuickSelect

Goal: find the k-th smallest item of an array a of
size n

If k is fixed (e.g., the median), then selection
should be faster than sorting

Linear average-case time O(n): by a small change

of QuickSort

Basic Recursive QuickSelect: to find the k-th
smallest item in a subarray:

(a[low], aflow + 1], ..., a[high])
such that 0 < low < k—1< high < n-1

Recursive QuickSelect

 If high =low = k- 1: return a[k —1]
+ Pick a median-of-three pivot and split the remaining
elements into two disjoint groups just as in QuickSort:
aflow], ..., a[i-1] < a[i] = pivot < a[i+1], ..., alhigh]
* Recursive calls:
- k<i: RecursiveQuickSelect(a, low, i — 1, k)
- k=i+1: return aJi]
- kzi+2: RecursiveQuickSelect(a, i+ 1, high, k)

Recursive QuickSelect

The average running time T(n) = cn (partitioning
an array) + the average time for selecting
among i or (n—1-i) elements where i varies

from 0 to n—1 |

v

Partitioning: a[0],...,a[n—1]

a[*] < pivot l a[* ]> pivot

a[0],...,afi-1]: afi+1],...,a[n—1]:

RecursiveQuickSelect ivot: afi RecursiveQuickSelect

QuickSelect: low=0, high=n-1

* T(n)=c:n (splitting the array) + { T(i) OR T(n-1-i) }
» Average running time:

T(n) :%(T(O)+...+T(n—2)+T(n—1))+ cn

or nT(n)=T(0)+...+ T(n—2)+T(n—1)+cn’
(N=D)T(n-1)=T(O0)+...+ T(n-2) +c(n-1)°
NT(n) — (n—1) T(n—1) — T(n) - T(n—1) = 2¢
or T(n) is O(n)




Algorithm HeapSort

« J. W. J. Williams (1964): a special binary tree
called heap to obtain an O(n log n) worst-case
sorting

» Basic steps:

— Convert an array into a heap in linear time
O(n)

— Sort the heap in O(n log n) time by deleting n
times the maximum item because each
deletion takes the logarithmic time O(log n)

Complete Binary Tree:
linear array representation
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Complete Binary Tree

A complete binary tree of the height h contains
between 2" and 2™!-1 nodes

A complete binary tree with the n nodes has the
height Llog,n]

Node positions are specified by the level-order
traversal (the root position is 1)

If the node is in the position p then:

— the parent node is in the position | p/2]

—the left  child is in the position 2p

—the right child is in the position 2p + 1
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Binary Heap

* A heap consists of a complete binary tree of
height h with numerical keys in the nodes

e The defining feature of a heap:

the key of each parent node is greater than
or equal to the key of any child node

* The root of the heap has the maximum key
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Complete Binary Tree:
linear array representation
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Binary Heap: insert a new key

* Heap of k keys > heap of k + 1 keys
+ Logarithmic time O( log k ) to insert a new
key:

—Create a new leaf position k+1 in the
heap

—Bubble (or percolate) the new key up by
swapping it with the parent if the latter one
is smaller than the new key

24




Binary Heap:
an example of
inserting a key
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Binary Heap:
delete the maximum key

* Heap of k keys > heap of k — 1 keys

* Logarithmic time O( log k ) to delete the root
(or maximum) key:
— Remove the root key

— Delete the leaf position k and move its key into
the root

— Bubble (percolate) the root key down by
swapping with the largest child if the latter one is
greater
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Binary Heap:
an example
of deleting the
maximum key
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Heapifying Recursion

h=1

recursive scan -
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Linear Time Heap Construction

* n insertions take O(n log n) time.

 Alternative O(n) procedure uses a recursively
defined heap structure:

C Root D

( Left subheap | (Right subheap )

— form recursively the left and right subheaps

— percolate the root down to establish the heap
order everywhere
28

Time to build a heap

i height &

T(h-1) \ Tih-1)

:\Time to restore the heap by
percolating the root down

T(h)=2T(h—1)+c-h; T(0)=0
— T(hy=c-(2" —h-1)

30




Linear time heap construction: non-
recursive procedure

* Nodes are percolated down in reverse level
order

* When the node p is processed, its descendants
will have been already processed.

* Leaves need not to be percolated down.

» Worst-case time T(h) for building a heap of
height h:

T(h) = 2T(h-1) + ch > T(h) = O(2")
— Form two subheaps of height h—1

— Percolate the root down a path of length at
most h
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Time to build a heap

+ Aheap of the height h has n =21 2h—1
nodes so that the height of the heap with n
items: h =[log,n1

* Thus, T(h) = O(2") yields the linear time T(n) =
O(n)

N
X _aN_ N _
_([(N xje"dx =e” —N -1 Two integral relationships

helping to derive the
above (see Slide 12) and

N

X _ N
J.XG dx=(N -Te” +1 the like discrete formulas
0

Time to build a heap Steps of HeapSort
T(h)y=2T(h-1)+c-h
S T(ho1) = 27 P | Mo |21 1P | #1514 | %15 | 716 | ¥17 | PTs | "%
(h-D=2"Tth-2)+2c-(h-D) a |70 655020 2 |91|25]31 15| 8
......... - 5 5
2" T(2) =2"'T(1)+2" ¢ -2 £ 1 o
2" T(1) = 2" T(0) +2"c-1=2""c-1 P o1 ”
T(hy=c-(1-2" +2:2"2 .+ (h-2)- 2> +(h—1)-2' +h-2°) Y o 70
=c-(2" -h-1) h|o1|e5]70|31| 8 |50[25|20[15]| 2
Steps of HeapSort Steps of HeapSort
a, 2165170 | 31 8 50 2520 | 15 @& a, 1513115021 8 2 25 | & n n
Rthe |70 2 Rh.[ 50 15
o 50 2 25 15

Hy |70] 65 | 50 | 31 | 8 2 25|20 | 15

a, 15165 | 50 | 31 | 8 2 12520 )70 | &

31 15
20 15
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h, | 50 | 31 | 25|20 | 8 2 |15

a, [ 15|31 | 25|20 | 8 2 6 n n

R.h. | 31|15

20 15

36




Steps of HeapSort

R.h.| 25 2

hy | 2520 2 |15/ 8

R.h.| 20| 8

15

h, |20 |15] 2 | 8
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Steps of HeapSort

a | 8|15 2 |®|% | % W |6 | MW 8§
R.h.l 15| 8

hy, | 15| 8 | 2

3 | 2| 8| ® | M| % | %N | W & | W | M
R.h.| g 2

h, | 8 | 2

ay 2 8 B |8 % A W | 6B n |

sorted array

38

Lower Bound for Sorting Complexity

« Each algorithm that sorts by comparing only
pairs of elements must use at least

[log,(n!) = nlog, n - 1.44n

comparisons in the worst case (that is, for some
“worst” input sequence) and in the average
case.

« Stirling's approximation of the factorial (n!):

1-2-.-n=n!> (%)”\/% ~2.5n" 0%

39

Decision Tree for Sorting n Items

Decision tree for n =3:

* i:j - a comparison of
a; and g

* ijk - a sorted array
(aa53y)

* n! permutations 2>
n! leaves

Sorting in descending

order of the numbers

@y iy 37 iy

ay=ay
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Decision Tree for Sorting n Items

+ Decision tree for N=3: an array a = {a,, a,, a;}

« Example: {35, 10, 17}
— Comparison 1:2 (35> 10) > left branch a, > a,
— Comparison 2:3 (10 < 17) - right branch a, < a,
— Comparison 1:3 (35> 17) > left branch a, > a,

* Sorted array 132 > {a,=35, a,=17, a,=10}

41

Decision Tree

« Decision tree of height h has L, < 2" leaves
* Mathematical induction:
- h=1:the tree of height 1 has L, < 2" leaves

- h—1 - h: let the tree of height h-1 have L, , <2"!
leaves; the tree of height h consists of a root and
two subtrees at most of height h—1. Thus,

L, =Ly, + Ly, <2ht+2m-1=2h

42




Worst-Case Complexity of Sorting

+ The lower bound for the least height h of a
decision tree for sorting by pairwise comparisons
which provides L, =2" > n! leaves is

h>log,(n!)=nlog,n—1.44n

» Thus, the worst-case complexity of the sorting is
at least O(n log n)

43

Average-Case Sorting Complexity

» Each n-element decision tree has an average
height at least log (n!) >nlogn

« Let H(D,K) be the sum of heights for all k
leaves of a tree D and H(k) = minp, H(D,k)
denote the minimum sum of heights

+ Math induction to prove that H(k) > k log k
- k=1: Obviously, H(1) =0
- k=1 > k: Let Hm)>m log m, m <k

44

Average-Case Sorting Complexity

* The tree D with k leaves contains 2 subtrees,
D, with m, <k leaves and D, with m,<k
leaves just under the root (m, + m,=k):

B 11D, k) = k + H(D,,m, )+ H(D,,m,)

D, D, because the link to the
root adds 1 to each

m, leaves| [m,leaves leaf's height

45

Average-Case Sorting Complexity
The minimum height : H(k) = k + minﬁk{H(ml) +H(m,)}
By the induction assumption :

H(k) <k + minﬁk{m1 log m, +m, log m, }
The minimum is reached by symmetry for m, =m, = %:
H(k) < k +2()log (%)= k log k
Thus the average height of the decision tree with at least n!

leaves is : (H(n%j <log,n!=znlog,n-1.44n
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Data Search

» Data record - Specific key

» Goal: to find all records with keys
matching a given search key

* Purpose:

—to access information in the record for
processing, or

— to update information in the record, or
—toinsert a new record or to delete the record

47

Types of Search

 Static search: stored data is not changed

— Given an integer search key X, return either
the position of X in an array A of records or an
indication that it is not present without altering
the array A

— If X occurs more than once, return any
occurrence

* Dynamic search: the data may be
inserted or deleted

48




Sequential and Jump Search

» Sequential search is the only one for an unsorted
arra

. Suc?:/essful / unsuccessful search: the O(n) worst-
case and average-case complexity

+ Jump search O(n%%) in a sorted array A of size n:
T= Fn/ﬂ jumps of length K to the points B; = min{t-k, n}
and the sequential search among K items in a t-th part such
that B <key <B-1;t=1,...,T

Al [ ]
B, k B, k B, kB, B;
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Jump Search O(n%3)

Worst-case complexity:

T(n,k) = E +k
Minimum complexity : for k = \/ﬁ
T(n) = min{T(n,k)} = 24/n

because 4 T(N,K)=—5+1=0 — n= k?
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Binary Search O(log n)

- Ordered array: key, < key, <... <key,,
+ Compare the search key with the record key; at
the middle position i = (n—1)/2
—if key = key;, return i
—if key < key; or key < key;, then it must be in the
1st or in the 2nd half of the array, respectively

» Apply the previous two steps to the chosen half of the
array iteratively (repeating halving principle)

51

Implementation of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
low < 0; high«~—n-1
while low < high do
middle «— [( low + high ) / 2]
if af middle ] < key then low «— middle + 1
else if a[ middle ] > key then high— middle — 1
else return middle end if
end while
return ltemNotFound
end BinarySearch
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Comparison
structure:
the binary

(search) tree

@ tree vertex
[ aray position m ()

— tree branch
Lh  range of positions
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Worst-Case Complexity O(log n)
of Binary Search
Letn=2k—1;k=1,2,..., then the binary tree is

complete (each internal node has 2 children)
The tree height is k —1

Each tree level | contains 2! nodes for | = 0 (the
root), 1, ..., k=2, k-1 (the leaves)

| + 1 comparisons to find a key of level |

The worst case: k =log,(n + 1) comparisons
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Average-Case Complexity O(log n)
of Binary Search
Let C;=1+ 1 be the number of comparisons to
find key, oflevel I; i=0,....,n-1; 1=0,...,k-
1
Average number: C =1(C,+C, +..+C, ,)
There are 2! nodes at the level |, so that:
C,+C +..4C, =S, , =12 +...+k- 2"
By math induction: S, , = 1+ (k—1) 2¥, so that
C=1(1+(k-1)2")=2log,(n+1)-1
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