
1

1

Algorithm MergeSort
• John von Neumann (1945!): a recursive

divide-and-conquer approach
• Three basic steps:

– If the number of items is 0 or 1, return
– Recursively sort the first and the second

halves separately
– Merge two presorted halves into a sorted

array
• Linear time merging O(n) yields MergeSort

time complexity O(n log n)

2

O(n) Merge of Sorted Arrays
if a[pointera] < b[pointerb] then c[pointerc] ← a[pointera];

pointera← pointera + 1;
pointerc← pointerc + 1

else c[pointerc] ← b[pointerb];
pointerb← pointerb + 1;
pointerc← pointerc + 1

3

Structure of MergeSort
begin MergeSort (an integer array a of size n)
1. Allocate a temporary array tmp of size n
2. RecursiveMergeSort(a, tmp, 0, n − 1)
end MergeSort

Temporary array: to merge each successive pair
of ordered subarrays a[left], …, a[centre] and
a[centre+1, …, a[right] and copy the merged
array back to a[left], …, a[right]

4

Recursive MergeSort
begin RecursiveMergeSort (an integer array a of

size n; a temporary array tmp of size n; range: left,
right)

if left < right then centre ← ⎣(left + right) ⁄ 2 ⎦
RecursiveMergeSort(a, tmp, left, centre);
RecursiveMergeSort(a, tmp, centre + 1, right);
Merge(a, tmp, left, centre + 1, right);
end if

end RecursiveMergeSort

5

How MergeSort works

2n comparisons for
random data

n comparisons
for
sorted/reverse
data

6

Analysis of mergeSort

+ O(n log n) best-, average-, and worst-case
complexity because the merging is always
linear

―Extra O(n) temporary array for merging data
―Extra work for copying to the temporary array

and back
• Useful only for external sorting
• For internal sorting: QuickSort and HeapSort

are much better

2

7

Algorithm QuickSort
• C. A. R. Hoare (1961): the divide-and-conquer

approach
• Four basic steps:

– If n = 0 or 1, return
– Pick a pivot item
– Partition the remaining items into the left and right

groups with the items that are smaller or greater
than the pivot, respectively

– Return the QuickSort result for the left group,
followed by the pivot, followed by the QuickSort
result for the right group

8

Recursive QuickSort

• T(n) = c·n (pivot positioning) + T(i) + T(n − 1 − i)

Partitioning: a[0],…,a[n−1]

a[0],…,a[i−1]:
RecursiveQuickSort

a[i+1],…,a[n−1]:
RecursiveQuickSortPivot: a[i]

a[∗] < pivot a[∗] > pivot

9

Analysis of QuickSort:
the worst case O(n2)

• If the pivot happens to be the largest (or
smallest) item, then one group is always empty
and the second group contains all the items but
the pivot

• Time for partitioning an array: c⋅n
• Running time for sorting: T(n) = T(n − 1) + c⋅n
• “Telescoping” (recall the basic recurrences):

2
)1()T(+

⋅=
nncn

10

Analysis of QuickSort:
the average case O(n log n)

• The left and right groups contain i and n − 1 − i
items, respectively; i = 0, …, n − 1

• Time for partitioning an array: c⋅n
• Average running time for sorting:

()
()
() 2

2

2

)1()2T(...)0T(2)1()1(
)1T()2T(...)0T(2)T(

)1T()2T(...)0T()T(

−+−++=−−

+−+−++=

+−+−++=

ncnnTn
cnnnnn

cnnnn n or ,

11

Analysis of QuickSort:
the average case O(n log n)

nT(n) − (n−1)T(n−1) nT(n) = (n+1)T(n−1) + 2cn

numberharmonic the is

 where

 :formExplicit

 :g"Telescopin"

th

n

 nH
nCcH

n
c

n
n

n
c

n
n

n
n

nn

n

577.0ln...1
log2

1
1...

4
1

3
1

2
12

1
)0T(

1
)T(

1
2)1T(

1
)T(

1
3
1

2
1

1

+≈++++=

≈≈

⎟
⎠
⎞

⎜
⎝
⎛

+
+++++=

+

+
+

−
≅

+

+

12

Analysis of QuickSort:
the choice of the pivot

• Never use the first a[low] or the last a[high]
item!

• A reasonable choice is the middle item:

where ⎣z⎦ is an integer “floor” of the real value z
• Good choice is the median of three:

a[low], a[middle], a[high]

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎥

⎢⎣
⎢ +

=
2

highlowmiddlea

3

13

Pivot positioning in QuickSort:
low=0 , middle=4, high=9

a[i]< p> a[j]; i++72312

a[i]< p> a[j]; i++71318

Conditionji706531205015912825

706531205015912825

i=MedianOfThree(a,low,high]
;
p=a[i]; swap(i, a[high−1])

701531205065912825

Initial array a651531205070912825

←Indices9876543210

DescriptionData to be sorted

14

Pivot positioning in QuickSort:
low=0 , middle=4, high=9

Conditionj7065312050159128 i25

swap(a[i], p = a[high−1])709165205015312825

i > j; break6765

a[i]< p > a[j]; i++666520
a[i]< p > a[j]; i++65652050

a[i]< p > a[j]; i++64652015

a[i] ≥ p > a[j];
swap; i++; j−−

736531
91

91
31

15

Data selection: QuickSelect
• Goal: find the k-th smallest item of an array a of

size n
• If k is fixed (e.g., the median), then selection

should be faster than sorting
• Linear average-case time O(n): by a small change

of QuickSort
• Basic Recursive QuickSelect: to find the k-th

smallest item in a subarray:
(a[low], a[low + 1], …, a[high])

such that 0 ≤ low ≤ k − 1 ≤ high ≤ n − 1

16

Recursive QuickSelect
• If high = low = k − 1: return a[k − 1]
• Pick a median-of-three pivot and split the remaining

elements into two disjoint groups just as in QuickSort:
a[low], …, a[i−1] < a[i] = pivot < a[i+1], …, a[high]

• Recursive calls:
· k ≤ i: RecursiveQuickSelect(a, low, i − 1, k)
· k = i + 1: return a[i]
· k ≥ i + 2: RecursiveQuickSelect(a, i + 1, high, k)

17

Recursive QuickSelect
The average running time T(n) = cn (partitioning

an array) + the average time for selecting
among i or (n−1−i) elements where i varies
from 0 to n−1

Partitioning: a[0],…,a[n−1]

a[0],…,a[i−1]:
RecursiveQuickSelect

a[i+1],…,a[n−1]:
RecursiveQuickSelectPivot: a[i]

a[∗] < pivot a[∗] > pivot

k ≥ i+2k ≤ i k = i+1OR OR
18

QuickSelect: low=0, high=n−1

• T(n) = c·n (splitting the array) + { T(i) OR T(n−1−i) }
• Average running time:

nT(n) − (n−1) T(n−1) → T(n) − T(n−1) ≅ 2c
or T(n) is O(n)

()

2

2

)1()2T(...)0T()1T()1(
)1T()2T(...)0T()T(

)1T()2T(...)0T(1)T(

−+−++=−−

+−+−++=

+−+−++=

ncnnn
cnnnnn

cnnn
n

n

 or

4

19

Algorithm HeapSort

• J. W. J. Williams (1964): a special binary tree
called heap to obtain an O(n log n) worst-case
sorting

• Basic steps:
– Convert an array into a heap in linear time

O(n)

– Sort the heap in O(n log n) time by deleting n
times the maximum item because each
deletion takes the logarithmic time O(log n)

20

Complete Binary Tree:
linear array representation

21

Complete Binary Tree
• A complete binary tree of the height h contains

between 2h and 2h+1−1 nodes
• A complete binary tree with the n nodes has the

height ⎣log2n⎦
• Node positions are specified by the level-order

traversal (the root position is 1)
• If the node is in the position p then:

– the parent node is in the position ⎣ p/2⎦
– the left child is in the position 2p
– the right child is in the position 2p + 1

22

Binary Heap

• A heap consists of a complete binary tree of
height h with numerical keys in the nodes

• The defining feature of a heap:
the key of each parent node is greater than
or equal to the key of any child node

• The root of the heap has the maximum key

23

Complete Binary Tree:
linear array representation

91

7065

31 8 50 25

21520

1

2 3

4 5 6 7

8 9 10

24

Binary Heap: insert a new key

• Heap of k keys heap of k + 1 keys
• Logarithmic time O(log k) to insert a new

key:
– Create a new leaf position k + 1 in the

heap
– Bubble (or percolate) the new key up by

swapping it with the parent if the latter one
is smaller than the new key

5

25

Binary Heap:
an example of
inserting a key

26

Binary Heap:
delete the maximum key

• Heap of k keys heap of k − 1 keys
• Logarithmic time O(log k) to delete the root

(or maximum) key:
– Remove the root key
– Delete the leaf position k and move its key into

the root
– Bubble (percolate) the root key down by

swapping with the largest child if the latter one is
greater

27

Binary Heap:
an example
of deleting the
maximum key

28

Linear Time Heap Construction
• n insertions take O(n log n) time.
• Alternative O(n) procedure uses a recursively

defined heap structure:

– form recursively the left and right subheaps
– percolate the root down to establish the heap

order everywhere

Left subheap

Root

Right subheap

29

Heapifying Recursion

70

65 50

20 2 91 25

31 15 8

L
e
a
v
e
s

recursive scan

7065

50

20 2

91

2531

15

8

h=1

h=2

h=3

h=4

s1 s2

s3

s4
Root

30

Time to build a heap

()12)T(
0)0T(;)1T(2)T(

1 −−⋅=→

=⋅+−=
+ hch

hchh
h

6

31

Linear time heap construction: non-
recursive procedure

• Nodes are percolated down in reverse level
order

• When the node p is processed, its descendants
will have been already processed.

• Leaves need not to be percolated down.
• Worst-case time T(h) for building a heap of

height h:
T(h) = 2T(h−1) + ch T(h) = O(2h)

– Form two subheaps of height h−1
– Percolate the root down a path of length at

most h
32

Time to build a heap
• A heap of the height h has n = 2h−1…2h − 1

nodes so that the height of the heap with n
items: h = ⎡log2n⎤

• Thus, T(h) = O(2h) yields the linear time T(n) =
O(n)

1)1(

1)(

0

0

+−=

−−=−

∫

∫

N
N

x

N
N

x

eNdxxe

NedxexN Two integral relationships
helping to derive the
above (see Slide 12) and
the like discrete formulas

33

Time to build a heap

1212)0T(2)1T(2
22)1T(2)2T(2

...
)1(2)2T(2)1T(2

)1T(2)T(

111

212

2

⋅=⋅+=

⋅+=

−⋅+−=−

⋅+−=

−−−

−−−

cc
c

hchh
hchh

hhhh

hhh

()
()12

22)1(2)2(...2221)T(
1

01221

−−⋅=

⋅+⋅−+⋅−++⋅+⋅⋅=
+

−−

hc
hhhch

h

hh

34

Steps of HeapSort

215202550831706591h

2
8

10/9

7091
5091

2031
8H

E
A
P
I
F
Y

15312591220506570a

9/8
8/7

7/6
6/5

5/4
4/3

3/2
2/1

1/0
p/i

35

Steps of HeapSort

15252820503165h8

1520
1531

91

91

1565R.h.
7020252831506515a2

1520252831506570H9

250
270Restor

e the
heap
(R.h.)

1520255083170652a1

36

Steps of HeapSort

2815252031h6

1520

91

91

1531R.h.
7065502820253115a4

152820253150h7

1525
1550R.h.

7065252820503115a3

7

37

Steps of HeapSort

821520h4

815

91

91

820R. h.
7065503125152208a6

81522025h5

225R. h.
7065503181525202a5

38

Steps of HeapSort

917065503125201582a9

28h2

91

91

28R. h.
7065503125201582a8

2815h3

815R. h.
7065503125202158a7

s o r t e d a r r a y

39

Lower Bound for Sorting Complexity

• Each algorithm that sorts by comparing only
pairs of elements must use at least

⎡log2(n!)⎤ ≅ n log2 n - 1.44n
comparisons in the worst case (that is, for some

“worst” input sequence) and in the average
case.

• Stirling's approximation of the factorial (n!):

() nnn
enne

nnn −+≈≥≡⋅⋅⋅ 5.05.22!...21 π
40

Decision Tree for Sorting n Items

Decision tree for n =3:
• i:j - a comparison of

ai and aj

• ijk - a sorted array
(ai aj ak)

• n! permutations
n! leaves

Sorting in descending
order of the numbers

41

Decision Tree for Sorting n Items

• Decision tree for n=3: an array a = {a1, a2, a3}

• Example: {35, 10, 17}
– Comparison 1:2 (35 > 10) left branch a1 > a2

– Comparison 2:3 (10 < 17) right branch a2 < a3

– Comparison 1:3 (35 > 17) left branch a1 > a3

• Sorted array 132 {a1=35, a3=17, a2=10}

42

Decision Tree
• Decision tree of height h has Lh ≤ 2h leaves
• Mathematical induction:

· h = 1: the tree of height 1 has L1 ≤ 2h leaves
· h−1 h: let the tree of height h−1 have Lh-1 ≤ 2h-1

leaves; the tree of height h consists of a root and
two subtrees at most of height h−1. Thus,

Lh = Lh−1 + Lh−1 ≤ 2h−1 + 2h−1 = 2h

8

43

Worst-Case Complexity of Sorting

• The lower bound for the least height h of a
decision tree for sorting by pairwise comparisons
which provides Lh = 2h ≥ n! leaves is

h ≥ log2(n!) ≅ n log2 n − 1.44 n
• Thus, the worst-case complexity of the sorting is

at least O(n log n)

44

Average-Case Sorting Complexity

• Each n-element decision tree has an average
height at least log (n!) ≥ n log n

• Let H(D,k) be the sum of heights for all k
leaves of a tree D and H(k) = minD H(D,k)
denote the minimum sum of heights

• Math induction to prove that H(k) ≥ k log k
· k = 1: Obviously, H(1) = 0
· k−1 k: Let H(m) ≥ m log m, m < k

45

Average-Case Sorting Complexity

• The tree D with k leaves contains 2 subtrees,
D1 with m1 < k leaves and D2 with m2 < k
leaves just under the root (m1 + m2 = k):

Root

D 1
D 2

m leaves m leaves1 2

because the link to the
root adds 1 to each
leaf's height

),DH(),DH(),DH(2211 mmkk ++=

46

Average-Case Sorting Complexity
{ }

{ }

() ()

nnnnn
n

n
kkkk

mm

mmmmkk

mmkk

kk

k

kmm

kmm

44.1log!log!
)!H(

!
loglog2)H(

:

loglogmin)H(

)H()H(min)H(

22

22

221

2211

21

21

21

−≅≤⎟
⎠
⎞⎜

⎝
⎛

=+≤

==

++≤

++=

=+

=+

 :is leaves

 least at withtree decision the ofheight average the Thus

 forsymmetry by reached is minimum The

:assumption induction theBy

:height minimum The

47

Data Search

• Data record Specific key
• Goal: to find all records with keys

matching a given search key
• Purpose:

– to access information in the record for
processing, or

– to update information in the record, or
– to insert a new record or to delete the record

48

Types of Search

• Static search: stored data is not changed
– Given an integer search key X, return either

the position of X in an array A of records or an
indication that it is not present without altering
the array A

– If X occurs more than once, return any
occurrence

• Dynamic search: the data may be
inserted or deleted

9

49

Sequential and Jump Search
• Sequential search is the only one for an unsorted

array
• Successful / unsuccessful search: the O(n) worst-

case and average-case complexity
• Jump search O(n0.5) in a sorted array A of size n:

T = ⎡n⁄k⎤ jumps of length k to the points Bt = min{t⋅k, n}
and the sequential search among k items in a t-th part such
that Bt−1 ≤ key ≤ Bt−1; t = 1,…,T

0 1

B B B B B

n−1

0 1 2 t T
k k k

A

50

Jump Search O(n0.5)

Worst-case complexity:

k
k
nkn +=),T(

2 01),T(

2)},{T(min)T(

2 knkn

nknn

nk

k
n

dk
d

k

=→=+−=

==

=

because

for :complexity Minimum

51

Binary Search O(log n)
• Ordered array: key0 < key1 < … < keyn-1

• Compare the search key with the record keyi at
the middle position i = ⎣(n−1)/2⎦
– if key = keyi, return i
– if key < keyi or key < keyi, then it must be in the

1st or in the 2nd half of the array, respectively
• Apply the previous two steps to the chosen half of the

array iteratively (repeating halving principle)

52

Implementation of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
low ← 0; high ← n − 1
while low ≤ high do

middle ← ⎣(low + high) / 2⎦
if a[middle] < key then low ← middle + 1
else if a[middle] > key then high← middle − 1
else return middle end if

end while
return ItemNotFound

end BinarySearch

53

Binary
search:
detailed
analysis

54

Comparison
structure:
the binary

(search) tree

10

55

Worst-Case Complexity O(log n)
of Binary Search

• Let n = 2k − 1; k = 1,2,…, then the binary tree is
complete (each internal node has 2 children)

• The tree height is k −1
• Each tree level l contains 2l nodes for l = 0 (the

root), 1, …, k − 2, k −1 (the leaves)
• l + 1 comparisons to find a key of level l
• The worst case: k = log2(n + 1) comparisons

56

Average-Case Complexity O(log n)
of Binary Search

• Let Ci = l + 1 be the number of comparisons to
find keyi of level l; i = 0, …, n−1; l = 0, …, k−
1

• Average number:
• There are 2l nodes at the level l, so that:

• By math induction: Sk−1 = 1+ (k−1) 2k, so that

()110
1 ... −+++= nn CCCC

10
1110 2...21... −

−− ⋅++⋅=≡+++ k
kn kSCCC

() 1)1(log2)1(1 2
11 −+=−+= + nkC n

nk
n

