Algorithm MergeSort

- John von Neumann (1945!): a recursive divide-and-conquer approach
- Three basic steps:
 - If the number of items is 0 or 1, return
 - Recursively sort the first and the second halves separately
 - Merge two presorted halves into a sorted array
- Linear time merging O(n) yields MergeSort time complexity $O(n \log n)$

Structure of MergeSort

begin MergeSort (an integer array *a* of size *n*)

- 1. Allocate a temporary array tmp of size *n*
- 2. RecursiveMergeSort(a, tmp, 0, n-1)

end MergeSort

Temporary array: to merge each successive pair of ordered subarrays a[left], ..., a[centre] and *a*[centre+1, ..., *a*[right] and copy the merged array back to *a*[left], ..., *a*[right]

Recursive MergeSort

begin RecursiveMergeSort (an integer array a of size *n*; a temporary array tmp of size *n*; range: left, right) if left < right then centre $\leftarrow \lfloor (left + right) / 2 \rfloor$ RecursiveMergeSort(a, tmp, left, centre); **RecursiveMergeSort(** *a*, tmp, centre + 1, right); **Merge**(*a*, tmp, left, centre + 1, right); end if end RecursiveMergeSort

Analysis of QuickSort: the worst case $O(n^2)$

- If the pivot happens to be the largest (or smallest) item, then one group is always empty and the second group contains all the items but the pivot
- Time for partitioning an array: $c \cdot n$
- Running time for sorting: $T(n) = T(n-1) + c \cdot n$
- "Telescoping" (recall the basic recurrences):

$$\mathrm{T}(n) = c \cdot \frac{n(n+1)}{2}$$

Analysis of QuickSort: the average case $O(n \log n)$

$$n \Gamma(n) - (n-1)\Gamma(n-1) \rightarrow n \Gamma(n) = (n+1)\Gamma(n-1) + 2cn$$

" Telescopin g": $\frac{T(n)}{n+1} \cong \frac{T(n-1)}{n} + \frac{2c}{n+1}$
Explicit form: $\frac{T(n)}{n+1} = \frac{T(0)}{1} + 2c\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n+1}\right)$
 $\approx 2cH_{n+1} \approx C \log n$
where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx \ln n + 0.577$
is the n^{th} harmonic number

		Pi	vo lov	tp v ≓	os 0,	itio m	onir ido	ng dle	in = 4	Qı , i	uic nig	kSort: h=9	
		0	Data	to k	be se	orte	d				I	Description	
0	1	2	3	4	5	6	7	8	9	←li	ndic	es	
25	8	2	91	70	50	20	31	15	65	Init	ial a	rray a	
25	8	2	91	65	50	20	31	15	70	i=M	edia	nOfThree(a,low,high)	
25	8	2	91	15	50	20	31	65	70	i=MedianOfThree(a,low,high]; ; p=a[i]; swap(i, a[high-1])			
25	8	2	91	15	50	20	31	65	70	i	j	Condition	
	8						31			1	7	a[i] a[j]; i++	
		2					31			2	7	a[i] a[j]; i++	
												13	

Pivot positioning in QuickSort: low=0 , middle=4, high=9

25	8	2	91	15	50	20	31	65	70	i	j	Condition
			91				31	65		3	7	$a[i] \ge p > a[j];$
			31				91					swap; <i>i</i> ++; <i>j</i>
				15		20		65		4	6	a[i] a[j]; i++
					50	20		65		5	6	a[i] a[j]; i++
						20		65		6	6	a[i] a[j]; i++
								65		7	6	i > j; break
25	8	2	31	15	50	20	65	91	70	sw	ap(a[i], p = a[high-1])
												14

Data selection: QuickSelect

- Goal: find the *k*-th smallest item of an array *a* of size *n*
- If *k* is fixed (e.g., the median), then selection should be faster than sorting
- Linear average-case time O(n): by a small change of QuickSort

15

• Basic Recursive QuickSelect: to find the *k*-th smallest item in a subarray:

 $(a[\mathsf{low}], a[\mathsf{low}+1], \dots, a[\mathsf{high}])$ such that $0 \le \mathsf{low} \le k-1 \le \mathsf{high} \le n-1$ Recursive QuickSelect
If high = low = k - 1: return a[k - 1]
Pick a median-of-three pivot and split the remaining elements into two disjoint groups just as in QuickSort: a[low], ..., a[i-1] < a[i] = pivot < a[i+1], ..., a[high]
Recursive calls:

k ≤ i:
RecursiveQuickSelect(a, low, i - 1, k)
k ≥ i + 1:
return a[i]
k ≥ i + 2:

Algorithm HeapSort

- J. W. J. Williams (1964): a special binary tree called **heap** to obtain an O(n log n) worst-case sorting
- Basic steps:
 - Convert an array into a heap in linear time O(n)
 - Sort the heap in $O(n \log n)$ time by deleting *n* times the maximum item because each deletion takes the logarithmic time $O(\log n)$

A complete binary tree of the height *h* contains between 2^h and 2^{h+1}-1 nodes A complete binary tree with the *n* nodes has the height log₂n^J Node positions are specified by the level-order traversal (the root position is 1) If the node is in the position *p* then: the parent node is in the position lp/2 the left child is in the position 2*p*the right child is in the position 2*p* + 1

Binary Heap

- A heap consists of a complete binary tree of height *h* with numerical keys in the nodes
- <u>The defining feature of a heap</u>: the key of each parent node is greater than or equal to the key of any child node
- The root of the heap has the maximum key

Linear Time Heap Construction

- n insertions take $O(n \log n)$ time.
- Alternative O(n) procedure uses a recursively defined heap structure:

- percolate the root down to establish the heap
- order everywhere

Linear time heap construction: nonrecursive procedure

- Nodes are percolated down in reverse level order
- When the node *p* is processed, its descendants will have been already processed.
- Leaves need not to be percolated down.
- Worst-case time T(h) for building a heap of height h:
 T(h) = 2T(h-1) + ch → T(h) = O(2^h)

$$T(h) = 2T(h-1) + ch \rightarrow T(h) = O(2)$$

- Form two subheaps of height
$$h-1$$

 Percolate the root down a path of length at most h

Time to build a heap

- A heap of the height *h* has n = 2^{h-1}...2^h − 1 nodes so that the height of the heap with n items: h = ⌈log₂n⌉
- Thus, $T(h) = O(2^h)$ yields the linear time T(n) = O(n)

$$\int_{0}^{N} (N-x)e^{x} dx = e^{N} - N - 1$$
$$\int_{0}^{N} xe^{x} dx = (N-1)e^{N} + 1$$

Ν

31

Two integral relationships helping to derive the above (see Slide 12) and the like discrete formulas

		S	step	os c	of H	eap	oSo	ort		
$p/_{i}$	1/0	2/1	3/2	4/3	5/4	6/5	7/6	8/7	9/8	10/9
a	70	65	50	20	2	91	25	31	15	8
HE					8					2
Ā				31				20		
ļ			91			50				
Ϋ́	91		70							
h	91	65	70	31	8	50	25	20	15	2
										34

		St	tep	s o	fΗ	eap	oSc	ort		
<i>a</i> ₁	2	65	70	31	8	50	25	20	15	81
Restor	70		2							
heap (R.h.)			50			2				
H_9	70	65	50	31	8	2	25	20	15	
<i>a</i> ₂	15	65	50	31	8	2	25	20	71	81
R.h.	65	15								
		31		15						
				20				15		
h.	65	31	50	20	8	2	25	15		

$$L_h = L_{h-1} + L_{h-1} \le 2^{h-1} + 2^{h-1} = 2^h$$

Worst-Case Complexity of Sorting

• The lower bound for the least height *h* of a decision tree for sorting by pairwise comparisons which provides $L_h = 2^h \ge n!$ leaves is

 $h \ge \log_2(n!) \cong n \log_2 n - 1.44 n$

• Thus, the worst-case complexity of the sorting is at least O(n log n)

43

Average-Case Sorting Complexity

- Each *n*-element decision tree has an average height at least $\log (n!) \ge n \log n$
- Let H(D,k) be the sum of heights for all kleaves of a tree D and $H(k) = \min_{D} H(D,k)$ denote the minimum sum of heights
- Math induction to prove that $H(k) \ge k \log k$ • k = 1: Obviously, H(1) = 0
 - $\cdot k = 1$: Obviously, H(1) = 0
 - · $k-1 \rightarrow k$: Let $H(m) \ge m \log m, m < k$

Data Search

- Data record → Specific key
- Goal: to find all records with keys matching a given search key
- · Purpose:
 - to access information in the record for processing, or
 - to update information in the record, or
 - to insert a new record or to delete the record

47

Types of Search

- Static search: stored data is not changed

 Given an integer search key X, return either the position of X in an array A of records or an indication that it is not present without altering the array A
 - If X occurs more than once, return any occurrence
- Dynamic search: the data may be inserted or deleted

Sequential and Jump Search

- Sequential search is the only one for an unsorted array
- Successful / unsuccessful search: the O(n) worstcase and average-case complexity
- Jump search $O(n^{0.5})$ in a sorted array A of size *n*: $T = \lceil \psi_k \rceil$ jumps of length *k* to the points $B_t = \min\{t \cdot k, n\}$ and the sequential search among *k* items in a *t*-th part such that $B_{t-1} \le \text{key} \le B_t - 1$; t = 1, ..., T

Jump Search $O(n^{0.5})$

Worst-case complexity:

Worst-Case Complexity O(log *n*) of Binary Search

- Let $n = 2^k 1$; k = 1, 2, ..., then the binary tree is complete (each internal node has 2 children)
- The tree height is k-1
- Each tree level l contains 2^{l} nodes for l = 0 (the root), 1, ..., k 2, k 1 (the leaves)
- + l+1 comparisons to find a key of level l
- The worst case: $k = \log_2(n+1)$ comparisons

55

Average-Case Complexity O(log *n*) of Binary Search

- Let $C_i = l + 1$ be the number of comparisons to find **key**_i of level *l*; i = 0, ..., n-1; l = 0, ..., k-1
- Average number: $\overline{C} = \frac{1}{n} (C_0 + C_1 + ... + C_{n-1})$

- There are 2^l nodes at the level l, so that: $C_0+C_1+\ldots+C_{n-1}\equiv S_{k-1}=1\cdot 2^0+\ldots+k\cdot 2^{k-1}$

• By math induction: $S_{k-1} = 1 + (k-1) 2^k$, so that $\overline{C} = \frac{1}{n} (1 + (k-1)2^k) = \frac{n+1}{n} \log_2(n+1) - 1$