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Algorithm MergeSort
• John von Neumann (1945!): a recursive 

divide-and-conquer approach
• Three basic steps:

– If the number of items is 0 or 1, return
– Recursively sort the first and the second 

halves separately
– Merge two presorted halves into a sorted 

array
• Linear time merging O(n) yields MergeSort

time complexity O(n log n)
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O(n) Merge of Sorted Arrays
if a[pointera] < b[pointerb] then c[pointerc] ← a[pointera]; 

pointera← pointera + 1;  
pointerc← pointerc + 1 

else c[pointerc] ← b[pointerb];          
pointerb← pointerb + 1;  
pointerc← pointerc + 1 
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Structure of MergeSort
begin MergeSort (an integer array a of size n)
1. Allocate a temporary array tmp of size n
2. RecursiveMergeSort( a, tmp, 0, n − 1 )
end MergeSort

Temporary array: to merge each successive pair 
of ordered subarrays a[left], …, a[centre] and  
a[centre+1, …, a[right] and copy the merged 
array back to a[left], …, a[right]

4

Recursive MergeSort
begin RecursiveMergeSort (an integer array a of 

size n; a temporary array tmp of size n; range: left, 
right ) 

if left < right then centre ← ⎣( left + right ) ⁄ 2 ⎦
RecursiveMergeSort( a, tmp, left, centre );
RecursiveMergeSort( a, tmp, centre + 1, right );
Merge( a, tmp, left, centre + 1, right );
end if

end RecursiveMergeSort
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How MergeSort works

2n comparisons for 
random data

n comparisons 
for 
sorted/reverse 
data
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Analysis of mergeSort

+ O(n log n) best-, average-, and worst-case 
complexity because the merging is always 
linear

―Extra O(n) temporary array for merging data
―Extra work for copying to the temporary array 

and back
• Useful only for external sorting
• For internal sorting: QuickSort and HeapSort

are much better
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Algorithm QuickSort
• C. A. R. Hoare (1961): the divide-and-conquer 

approach
• Four basic steps:

– If n = 0 or 1, return
– Pick a pivot item
– Partition the remaining items into the left and right 

groups with the items that are smaller or greater 
than the pivot, respectively

– Return the QuickSort result for the left group, 
followed by the pivot, followed by the QuickSort
result for the right group
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Recursive QuickSort

• T(n) = c·n (pivot positioning) + T(i) + T(n − 1 − i)

Partitioning: a[0],…,a[n−1]

a[0],…,a[i−1]:
RecursiveQuickSort

a[i+1],…,a[n−1]:
RecursiveQuickSortPivot: a[i]

a[∗] < pivot a[∗] > pivot
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Analysis of QuickSort: 
the worst case O(n2)

• If the pivot happens to be the largest (or 
smallest) item, then one group is always empty 
and the second group contains all the items but 
the pivot

• Time for partitioning an array: c⋅n
• Running time for sorting: T(n) = T(n − 1) + c⋅n
• “Telescoping” (recall the basic recurrences):
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Analysis of QuickSort: 
the average case O(n log n)

• The left and right groups contain i and n − 1 − i
items, respectively; i = 0, …, n − 1

• Time for partitioning an array: c⋅n
• Average running time for sorting:
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Analysis of QuickSort: 
the average case O(n log n)

nT(n) − (n−1)T(n−1) nT(n) =  (n+1)T(n−1) + 2cn
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Analysis of QuickSort: 
the choice of the pivot 

• Never use the first a[low] or the last a[high]
item!

• A reasonable choice is the middle item:

where ⎣z⎦ is an integer “floor” of the real value z
• Good choice is the median of three:

a[low], a[middle], a[high]

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎥

⎢⎣
⎢ +

=
2

highlowmiddlea



3

13

Pivot positioning in QuickSort: 
low=0 , middle=4, high=9

a[i]< p> a[j]; i++72312

a[i]< p> a[j]; i++71318

Conditionji706531205015912825

706531205015912825

i=MedianOfThree(a,low,high]
;
p=a[i]; swap( i, a[high−1] )

701531205065912825

Initial array a651531205070912825

←Indices9876543210

DescriptionData to be sorted
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Pivot positioning in QuickSort: 
low=0 , middle=4, high=9

Conditionj7065312050159128 i25

swap(a[i], p = a[high−1])709165205015312825

i > j; break6765

a[i]< p > a[j]; i++666520
a[i]< p > a[j]; i++65652050

a[i]< p > a[j]; i++64652015

a[i] ≥ p > a[j]; 
swap; i++; j−−

736531
91

91
31
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Data selection: QuickSelect
• Goal: find the k-th smallest item of an array a of 

size n
• If k is fixed (e.g., the median), then selection 

should be faster than sorting
• Linear average-case time O(n): by a small change 

of QuickSort
• Basic Recursive QuickSelect: to find the k-th

smallest item in a subarray:
(a[low], a[low + 1], …, a[high])

such that  0  ≤ low ≤ k − 1 ≤ high ≤ n − 1
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Recursive QuickSelect
• If high = low = k − 1: return  a[k − 1]
• Pick a median-of-three pivot and split the remaining 

elements into two disjoint groups just as in QuickSort:
a[low], …, a[i−1]  < a[i] = pivot < a[i+1], …, a[high]

• Recursive calls:
· k ≤ i: RecursiveQuickSelect(a, low, i − 1, k)
· k = i + 1: return a[i]
· k ≥ i + 2: RecursiveQuickSelect(a, i + 1, high, k)
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Recursive QuickSelect
The average running time T(n) = cn (partitioning 

an array) +  the average time for selecting 
among i or (n−1−i) elements where i varies 
from 0 to n−1

Partitioning: a[0],…,a[n−1]

a[0],…,a[i−1]:
RecursiveQuickSelect

a[i+1],…,a[n−1]:
RecursiveQuickSelectPivot: a[i]

a[∗] < pivot a[∗ ] > pivot

k ≥ i+2k ≤ i k = i+1OR OR
18

QuickSelect: low=0, high=n−1

• T(n) = c·n (splitting the array) + { T(i) OR T(n−1−i) }
• Average running time:

nT(n) − (n−1) T(n−1) → T(n) − T(n−1) ≅ 2c
or T(n) is  O(n)
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Algorithm HeapSort

• J. W. J. Williams (1964): a special binary tree 
called heap to obtain an O(n log n) worst-case 
sorting

• Basic steps:
– Convert an array into a heap in linear time 

O(n)

– Sort the heap in O(n log n) time by deleting n
times the maximum item because each 
deletion takes the logarithmic time O(log n)
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Complete Binary Tree:
linear array representation

21

Complete Binary Tree
• A complete binary tree of the height h contains 

between 2h and 2h+1−1 nodes
• A complete binary tree with the n nodes has the 

height  ⎣log2n⎦
• Node positions are specified by the level-order 

traversal (the root position is 1)
• If the node is in the position p then:  

– the parent node is in the position ⎣ p/2⎦
– the left      child  is in the position  2p
– the right    child  is in the position  2p + 1

22

Binary Heap

• A heap consists of a complete binary tree of 
height h with numerical keys in the nodes

• The defining feature of a heap: 
the key of each parent node is greater than
or equal to the key of any child node 

• The root of the heap has the maximum key

23

Complete Binary Tree:
linear array representation

91

7065

31 8 50 25

21520

1

2 3

4 5 6 7

8 9 10
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Binary Heap: insert a new key

• Heap of k keys heap of k + 1 keys 
• Logarithmic time O( log k ) to insert a new 

key: 
– Create a new leaf position k + 1 in the 

heap
– Bubble (or percolate) the new key up by 

swapping it with the parent if the latter one 
is smaller than the new key
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Binary Heap: 
an example of 
inserting a key
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Binary Heap: 
delete the maximum key

• Heap of k keys heap of k − 1 keys
• Logarithmic time O( log k ) to delete the root  

(or maximum) key:
– Remove the root key
– Delete the leaf position k and move its key into 

the root
– Bubble (percolate) the root key down by 

swapping with the largest child if the latter one is 
greater 
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Binary Heap: 
an example  
of deleting the 
maximum key
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Linear Time Heap Construction
• n insertions take O(n log n) time.
• Alternative O(n) procedure uses a recursively 

defined heap structure:

– form recursively the left and right subheaps
– percolate the root down to establish the heap 

order everywhere

Left subheap

Root

Right subheap

29

Heapifying Recursion

70

65 50

20 2 91 25

31 15 8

L
e
a
v
e
s

recursive scan

7065

50

20 2

91

2531

15

8

h=1

h=2

h=3

h=4

s1 s2

s3

s4
Root
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Time to build a heap
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Linear time heap construction: non-
recursive procedure

• Nodes are percolated down in reverse level 
order

• When the node p is processed, its descendants 
will have been already processed.

• Leaves need not to be percolated down.
• Worst-case time T(h) for building a heap of 

height h: 
T(h) = 2T(h−1) + ch T(h) = O(2h)

– Form two subheaps of height h−1
– Percolate the root down a path of length at 

most h
32

Time to build a heap
• A heap of the height h has n = 2h−1…2h − 1 

nodes so that the height of the heap with n 
items: h = ⎡log2n⎤

• Thus, T(h) = O(2h) yields the linear time T(n) =
O(n)
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Time to build a heap
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort
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Steps of HeapSort

917065503125201582a9

28h2

91

91

28R. h.
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2815h3

815R. h.
7065503125202158a7

s o r t e d    a r r a y
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Lower Bound for Sorting Complexity

• Each algorithm that sorts by comparing only 
pairs of elements must use at least

⎡log2(n!)⎤ ≅ n log2 n - 1.44n
comparisons in the worst case (that is, for some 

“worst” input sequence) and in the average 
case. 

• Stirling's approximation of the factorial (n!):

( ) nnn
enne

nnn −+≈≥≡⋅⋅⋅ 5.05.22!...21 π
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Decision Tree for Sorting n Items

Decision tree for n =3: 
• i:j - a comparison of 

ai and aj

• ijk - a sorted array 
(ai aj ak) 

• n! permutations 
n! leaves

Sorting in descending
order of the numbers

41

Decision Tree for Sorting n Items

• Decision tree for n=3: an array a = {a1, a2, a3}

• Example: {35, 10, 17}
– Comparison 1:2 (35 > 10) left branch   a1 > a2

– Comparison 2:3  (10 < 17) right branch a2 < a3

– Comparison 1:3  (35 > 17) left branch   a1 > a3

• Sorted array 132 {a1=35, a3=17, a2=10}

42

Decision Tree
• Decision tree of height h has Lh ≤ 2h leaves
• Mathematical induction:

· h = 1: the tree of height 1 has L1 ≤ 2h leaves
· h−1 h: let the tree of height h−1 have Lh-1 ≤ 2h-1

leaves; the tree of height h consists of a root and 
two subtrees at most of height h−1. Thus, 

Lh = Lh−1 + Lh−1 ≤ 2h−1 + 2h−1 = 2h
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Worst-Case Complexity of Sorting

• The lower bound for the least height h of a 
decision tree for sorting by pairwise comparisons 
which provides Lh = 2h ≥ n! leaves is

h ≥ log2( n!) ≅ n log2 n − 1.44 n
• Thus, the worst-case complexity of the sorting is 

at least O(n log n)
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Average-Case Sorting Complexity

• Each n-element decision tree has an average 
height at least log (n!) ≥ n log n

• Let H(D,k) be the sum of heights for all k
leaves of a tree D and H(k) = minD H(D,k)
denote the minimum sum of heights

• Math induction to prove that H(k) ≥ k log k
· k = 1: Obviously, H(1) = 0
· k−1 k: Let H(m) ≥ m log m, m < k

45

Average-Case Sorting Complexity

• The tree D with k leaves contains 2 subtrees, 
D1 with m1 < k leaves and  D2 with m2 < k
leaves just under the root (m1 + m2 = k):

Root

D 1
D 2

m leaves m leaves1 2

because the link to the 
root adds 1 to each 
leaf's height

),DH(),DH(),DH( 2211 mmkk ++=
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Average-Case Sorting Complexity 
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Data Search

• Data record Specific key
• Goal: to find all records with keys 

matching a given search key
• Purpose: 

– to access information in the record for 
processing, or

– to update information in the record, or
– to insert a new record or to delete the record 

48

Types of Search

• Static search: stored data is not changed
– Given an integer search key X, return either 

the position of X in an array A of records or an 
indication that it is not present without altering 
the array A 

– If X occurs more than once, return any 
occurrence

• Dynamic search: the data may be 
inserted or deleted 
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Sequential and Jump Search
• Sequential search is the only one for an unsorted

array 
• Successful / unsuccessful search: the O(n) worst-

case and average-case  complexity
• Jump search O(n0.5) in a sorted array A of size n:      

T = ⎡n⁄k⎤ jumps of length k to the points Bt = min{t⋅k, n} 
and the sequential search among k items in a t-th part such
that Bt−1 ≤ key ≤ Bt−1; t = 1,…,T

0 1

B                    B                    B                           B                                 B

n−1

0                            1                            2                                      t                                              T
k k k

A
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Jump Search O(n0.5)

Worst-case complexity:
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Binary Search O(log n)
• Ordered array: key0 < key1 < … < keyn-1

• Compare the search key with the record keyi at 
the middle position i = ⎣(n−1)/2⎦
– if key = keyi, return i
– if key < keyi or key < keyi, then it must be in the 

1st or in the 2nd half of the array, respectively
• Apply the previous two steps to the chosen half of the 

array iteratively (repeating halving principle)

52

Implementation of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
low ← 0;   high ← n − 1
while low ≤ high do

middle ← ⎣( low + high ) / 2⎦
if a[ middle ] < key then low  ← middle + 1
else if a[ middle ] > key then high← middle − 1
else return middle end if

end while
return ItemNotFound

end BinarySearch

53

Binary 
search: 
detailed 
analysis

54

Comparison 
structure: 
the binary 

(search) tree
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Worst-Case Complexity O(log n)
of Binary Search

• Let n = 2k − 1; k = 1,2,…, then the binary tree is 
complete (each internal node has 2 children)

• The tree height is k −1
• Each tree level l contains 2l nodes for l = 0 (the 

root), 1, …, k − 2, k −1 (the leaves)
• l + 1 comparisons to find a key of level l
• The worst case: k = log2(n + 1) comparisons

56

Average-Case Complexity O(log n)
of Binary Search

• Let Ci = l + 1 be the number of comparisons to
find keyi of level l;   i = 0, …, n−1;   l = 0, …, k−
1

• Average number:
• There are 2l nodes at the level l, so that:

• By math induction: Sk−1 = 1+ (k−1) 2k, so that
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