
1

1

Function g(n) is
“Big-Oh” of f(n) if,
starting from
some n > n0,
there always
exist a function
c·f(n) that grows
faster than the
function g(n)

g(n) is O(f(n)), or g(n) = O(f(n))

2

“Big-Oh” O(…) : Informal Meaning

• g is O(f) means that the order of time
complexity of the function g is
asymptotically less than or equal to the
order of time complexity of the function f
– Asymptotical behaviour ↔ only for the large

values of n
– Two functions are of the same order when

they each are “Big-Oh” of the other: f = O(g)
AND g = O(f)

– This property is called “Big-Theta”: g = Θ(f)

3

g is O(f) means that the algorithm with
time complexity g runs (for large n) at
least as fast, within a constant factor, as
the algorithm with time complexity f

{ } cn
n

n
=

∞→
)f(

)g(lim

“Big-Oh” O(…) : Informal Meaning

4

• The function g(n) is Ω(f(n)) iff there exist
a real positive constant c > 0 and a
positive integer n0 such that g(n) ≥ cf(n)
for all n ≥ n0
– Big Omega is just opposite to Big Oh
– It generalises the concept of “lower bound”

(≥) in the same way as Big Oh generalises
the concept of “upper bound” (≤)

– If f(n) is Ο(g(n)) then g(n) is Ω(f(n))

Big-Omega

5

• The function g(n) is Θ(f(n)) iff there exist
two real positive constants c1 > 0 and c2
> 0 and a positive integer n0 such that:

c1f(n) ≥ g(n) ≥ c2f(n) for all n ≥ n0
– Whenever two functions, f and g, are of the

same order, g(n) is Θ(f(n)), they are each
Big-Oh of the other: g(n) is Ο(f(n)) AND f(n)
is Ο(g(n))

Big-Theta

6

“Big-Oh” specifies an upper bound of
complexity so that the following (and
like) relationships hold:

1 = O(log n) = O(n) = O(n log n) = …
log n = O(n) = O(n log n) = O(nα); α > 1 = …
n = O(n log n) = O(nα); α > 1 = O(2n) =…
n log n = O(nα); α > 1 = O(nk); k > α = …
nk = O(nα); α > k = O(2n) = …

Upper bounds of complexity

2

7

352920102n

3,74680711210n3

72,5227,25237910n2

1.40⋅10665,1281,27510n1.5

6.72⋅107883,8953,99710n log n
5.26⋅1085.26⋅10614,40010n

1
century

1 year1 day1 minute
Number of data items processed per:f(n)

Time complexity growth

8

☺If a linear, O(n), algorithm processes 10
items per minute, then it can process
14,400 items per day, 5,260,000 items
per year, and 526,000,000 items per
century.

☻If an exponential, O(2n), algorithm
processes 10 items per minute, then it
can process only 20 items per day and
35 items per century...

Beware exponential
complexity

9

1 ← log log n ← log n ← n ← n log n
← nα; 1<α <2 ← n2 ← n3 ← nm; m > 3 ← 2n …

Questions:
– Where is the place of n3 log n?
– Where is the place of n2.79?

Ascending order of complexity

10

1 ← log log n ← log n ← n ← n log n
← nα; 1<α <2 ← n2 ←n2.79 ← n3 ←
n3log n← nm; m > 3 ← 2n …

Answer:

11

• The exact running time function is not
important, since it can be multiplied by
any arbitrary positive constant.

• Two functions are compared only
asymtotically, for large n, and not near
the origin
– If the constants involved are very large, then

the asymptotical behaviour is of no practical
interest!

12

• Let algorithms A and B have running times
TA(n) = 20n ms and TB(n) = 0.1n log2n ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volume can A

outperform B?
TA(n) < TB(n) if 20n < 0.1n log2n, or
log2n > 200, that is, when n >2200 ≈ 1060 !

• Thus, in all practical cases B is better than
A…

Example

3

13

Let algorithms A and B have running times
TA(n) = 20n ms and TB(n) = 0.1n2 ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volumes A outperforms

B?
TA(n) < TB(n) if 20n < 0.1n2, or n > 200

• Thus A is better than B in most practical
cases except for n < 200 when B becomes
faster…

Example

14

Examples

O(3n) 2⋅3n

O(2n) as 23+n≡23⋅2n23+n

O(8n) as 23n≡(23)n23n

O(n)23 n
O(n3)0.001n3 + n2 + 1
O(n2)n2 + 100 n + 1

Complexity O(n)Running time T(n)

15

Examples

O(log n) as
logc(ab)=logca +logcb

30 log20(23n)
actually NOT that

hard…

O(n2)100000 n2 + 10000 n
O(n2)0.0001 n2 + 10000 n
O(n)100000 n + 10000
O(n)0.0001 n + 10000

Complexity O(n)Running time T(n)

16

Example

Assume that we have an algorithm with a running time

that can process x input items on your computer.

nnT =)(

What input size it can process if the computer is 100 times faster?

xn

xn

new

new

410

100

=

=

17

• Upper bounds: simple to obtain
• Lower bounds: a difficult matter...
• Worst case data may be unlikely to be met in

practice
• Unknown “Big-Oh” constants c and n0 may not be

small
• Inputs in practice lead to much lower running times
• Example: the most popular fast sorting algorithm,

QuickSort, has O(n2) running time in the worst case
but in practice the time is O(n log n)

Worst-Case Performance

18

• Estimate average time for each
operation

• Estimate frequencies of operations
• May be a difficult challenge... (take

COMPSCI.320 for details)
• May be no natural “average” input at all
• May be hard to estimate (average time

for each operation depends on data)

Average-Case Performance

4

19

Divide-and-conquer principle:
• to divide a large problem into smaller

ones and recursively solve each
subproblem, then

• to combine solutions of the subproblems
to solve the original problem

Running time: by a recurrence relation
combining the size and number of the
subproblems and the cost of dividing the
problem into the subproblems

Recurrence Relations

20

• Recurrence relation and its base
condition (i.e., the difference equation
and initial condition):

T(n) = 2⋅T(n−1) + 1; T(0) = 0
• Closed (explicit) form for T(n) by

“telescoping”:

“Telescoping” a Recurrence

21

1)0T(2)1T(
...

1)2T(2)1T(
1)1T(2)T(

+=

+−=−
+−=

nn
nn

We substitute the unknown term T(n-1), T(n-2),,, until the base case
T(1)=1.

12...2)0(2)(
...

122)3(2)(
12)2(2)(
1)1)2(2(2)(

1

123

12

++++=

+++−=
++−=

++−=

−nnTnT

nTnT
nTnT
nTnT

12)(−= nnT

22

11

232

2

2)0T(2)2T(2
...

2)3T(2)2T(2
2)2T(2)1T(2

1)1T(2)T(

−− +=

+−=−
+−=−

+−=

nnn

nn
nn

nn
“Telescoping” ≡ Substitution

122...221)T(12 −=++++= − nnn

23

Basic Recurrence: 1

2
)1()T()1T()T(+=⇔+−= nnnnnn

1)1T(
2)1T()2T(

...
1)2T()1T(

)1T()T(

=
+=

−+−=−
+−=

nnn
nnn

24

1: Explicit Expression for T(n)

2
)1()1()2(...21

)1()2(...2)1T(

)1()2(...3)2T(...

)1()2()3T(

)1()2T(

)1T()T(

+=+−+−+++=

+−+−+++=

+−+−+++=

+−+−+−=

+−+−=

+−=

nnnnn

nnn

nnn

nnnn

nnn

nnn

5

25

Guessing to Solve a Recurrence
• Guess a hypothetic solution T(n); n ≥ 0 from a

sequence of numbers T(0), T(1), T(2), …,
obtained from the recurrence relation

• Prove T(n) by math induction:
Base condition: T holds for n = nbase ,e.g. T(0) or

T(1)
Induction hypothesis to verify: for every n > nbase,

if T holds for n − 1, then T holds for n
Strong induction: if T holds for nbase, …, n - 1,

then…
26

Explicit Expression for T(n)
• T(1) = 1; T(2) = 1 + 2 = 3; T(3) = 3 + 3 = 6;

T(4) = 6 + 4 = 10 ⇒ Hypothesis:
• Base condition holds: T(1) = 1·2 / 2 = 1
• If the hypothetic closed-form relationship T(n)

holds for n − 1 then it holds also for n:

• Thus, the expression for T(n) holds for all n >
1

27

Basic Recurrence: 2

• Repeated halving principle: halve the
input in one step:

• “Telescoping” (for n = 2m):
nnnn 2log)T(1)2T()T(≅⇔+=

0)2T(
1)2T()2T(
1)2T()2T(

...
1)2T()2T(
1)2T()2T(

0

01

12

21

1

=

+=
+=

+=
+=

−−

−

mm

mm

28

2: Explicit Expression for T(n)

nnmm

m

mm

2

0

1

2

1

log)T()2T(
11...11)2T(

1...11)2T(...

11)2T(

1)2T()2T(

=⇒=
+++++=

++++=

++=

+=
−

−

29

Basic Recurrence: 3
• Scan and halve the input:

• “Telescoping” (for n = 2m):
nnnnn 2)T()2T()T(≅⇔+=

1)2T(
2)2T()2T(
2)2T()2T(

...
2)2T()2T(
2)2T()2T(

0

101

212

121

1

=

+=
+=

+=
+=

−−−

−

mmm

mmm

30

3: Explicit Expression for T(n)

nnmm

mm

mm

mmm

mmm

2)T(12)2T(
22...22)2T(

22...2)2T(...

22)2T(

2)2T()2T(

1

1210

121

12

1

≅⇒−=

+++++=

++++=

++=

+=

+

−

−

−−

−

6

31

Basic Recurrence: 4

• “Divide-and-conquer” prototype:

• “Telescoping”:

• For

nnnnnn 2log)T()2T(2)T(≅⇔+=

() 0)1T(;1
2
2T)T(=+=

n
n

n
n

1
2

)2T(
2

)2T(2 1

1

+=→= −

−

m

m

m

m
mn

32

4: Explicit Expression for T(n)

m

mm

mmmm

=+++=
+++++=

++++=

++=

+=
−−

−−

1...10
11...112)2T(

11...12)2T(...

112)2T(

12)2T(2)2T(

00

11

22

11

nnnm mm
2log)T(2)2T(=⇒⋅=

33

General “Divide-and-Conquer”
Theorem: The recurrence

with integer constants a≥1 and b≥2 and positive
constants c and k has the solution:

Proof by telescoping:

⎪
⎩

⎪
⎨

⎧

>
=
<

=
abnO
abnnO
abnO

n
kk

kk

kab

if)(
if)log(
if)(

)T(

log

mkmmm cbbabbn +=⇒= −)T()T(1

34

General “Divide-and-Conquer”
• Telescoping:

kmmm

kmmm

kmmm

mkmm

cbaTabTa

acbbTabTa
acbbTabaT

cbbaTbT

11

)2(3322

)1(221

1

)1()(
... ...

)()(
)()(

)()(

−−

−−−

−−−

−

+=
=

+=

+=
+=

()∑ ∑
= =

−

−−

==

++++=
m

t

m

t

t
a

bmtktm

mkkmkmmm

kcabac

cbacbcbacab

0 0

)1(1 ...)T(

35

Capabilities and Limitations
• Rough complexity analysis cannot result

immediately in an efficient practical program but it
helps in predicting of empirical running time of the
program

• “Big-Oh” analysis is unsuitable for small input and
hides the constants c and n0 crucial for a practical
task

• “Big-Oh” analysis is unsuitable if costs of access
to input data items vary and if there is lack of
sufficient memory

• But complexity analysis provides ideas how to
develop new efficient methods

36

Data Sorting

• Ordering relation: places each pair α, β of
countable items in a fixed order denoted as (α,β) or
<α,β>

• Order notation: α ≤ β (less than or equal to)
• Countable item: labelled by a specific integer key
• Comparable objects in Java: if an object can be

less than, equal to, or greater than another object:
object1.compareTo(object2) <0, =0, >0

7

37

Order of Data Items
• Numerical order - by value:

5 ≤ 5 ≤ 6.45 ≤ 22.79 ≤ … ≤ 1056.32
• Alphabetical order - by position in an

alphabet:
a ≤ b ≤ c ≤ d ≤ … ≤ z

Such ordering depends on the alphabet used:
look into any bilingual dictionary...

• Lexicographic order - by first differing
element:

5456 ≤ 5457 ≤ 5500 ≤ 6100 ≤ …
pork ≤ ward ≤ word ≤ work ≤

…
38

Features of ordering
• Relation on an array A = {a, b, c, …} is:

– reflexive: a ≤ a
– transitive: if a ≤ b and b ≤ c, then a ≤ c
– symmetric: if a ≤ b and b ≤ a, then a = b

• Linear order if for any pair of elements a
and b either a ≤ b or b ≤ a: a ≤b ≤ c ≤ …

• Partial order if there are incomparable
elements

39

Insertion Sort
• Splits an array into a unordered and

ordered parts
• Sequentially contracts the unordered part,

one element per stage:
ordered part unordered part
a0, …, ai−1 ai, …, an−1

• Stage i = 1, …, n−1:
n− i unordered and i ordered

elements
40

Example of Insertion Sort
• Nc - number of comparisons per insertion
• Nm - number of moves per insertion

3

→
→
→
Nm

420104435181513
≥15
<1815
<3515
<4415
Nc20101544351813

41

Example of Insertion Sort

5
→
→
→
→
→
Nm

520443518151310
<1310
<1510
<1810
<3510
<4410
Nc20104435181513

42

Implementation of Insertion Sort
begin InsertionSort (integer array a of size n)
1. for i ← 1 while i < n step i ← i + 1 do
2. stmp ← a[i]; k ← i − 1
3. while k ≥ 0 AND stmp < a[k] do
4. a[k +1] ← a[k]; k ← k − 1
5. end while
6. a[k+1] ← stmp
7. end for
end InsertionSort

8

43

Average Complexity at Stage i
• i + 1 positions to place a next item: 0 1 2 … i

-1 i
• i − j + 1 comparisons and i − j moves for

each position j = i, i−1, …, 1
• i comparisons and i moves for position j = 0
• Average number of comparisons:

121
...21

+
+=

+
++++=

i
ii

i
iiEi

44

Total Average Complexity
• n − 1 stages for n input items: the total

average number of comparisons:

• Hn ≅ ln n + 0.577 when n → ∞ is the n-th harmonic
number

() () ()
()

()n
nn

n
n

n
nn

n
nn

n

n

n

HEEEE

1
3
1

2
1

4
)1(

1
3
2

2
1

2
1

1
2

1
3
2

2
2

2
1

2
1

4
3

4121

...

...))1(...21(
...

... 2

+++−+=

++++−+++=
++++++

−+=+++=

−

−

−−

−

45

Analysis of Inversions
• An inversion in an array A = [a1,a2, …, an] is any

ordered pair of positions (i, j) such that i < j but ai
> aj: e.g., […, 2,…, 1] or [100, …, 35, …]

10107,4,3,2,101,2,3,4,7
621,5,2,343,2,5,1
325,2,313,2,5

Total ## invers.Areverse# invers.A

46

Analysis of Inversions

• Total number of inversions both in an arbitrary
array A and its reverse Areverse is equal to the
total number of the ordered pairs (i < j):

• A sorted array has no inversions
• A reverse sorted array has inversions

2
)1(

2
nnn ⋅−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2
)1(nn −

47

Analysis of Inversions

• Exactly one inversion is removed by
swapping two neighbours ai−1 > ai

• An array with k inversions results in O(n +
k) running time of insertionSort

• Worst-case time:

• Average-case time:
)O(, 2

2
2 nc n or

)O(, 2
4
2 nc n or

48

More Efficient Shell's Sort
• Efficient sort must eliminate more than just

one inversion between the neighbours per
exchange! (insertion sort eliminates one inversion
per exchange)

• D.Shell (1959): compare first the keys at a
distance of gapT, then of gapT-1 < gapT, and so on
until of gap1=1

• After a stage with gapt, all elements spaced gapt
apart are sorted; it can be proven that any gapt-
sorted array remains gapt-sorted after being then
gapt-1-sorted

9

49

Implementation of ShellSort
begin Shell Sort (integer array a of size n)
1. for gap ← ⎣n ⁄ 2⎦ while gap > 0

step gap ← (if gap = 2 then 1 else ⎣gap ⁄
2.2⎦) do

2. for i ← gap while i < n step i ← i + 1 do
3. stmp← a[i]; k ← i
4. while(k ≥ gap AND stmp < a[k − gap] do
5. a[k] ← a[k − gap]; k ← k − gap
6. end while
7. a[k] ← stmp; 8. end for; 9. end for
end Shell Sort

50

Example of ShellSort: step 1

709131205065152825
70659:1:1

91158:1:1
3127:1:0

2086:1:0
50255:1:05

651531205070912825
Data to be sortedi:C:

M
gap

51

Example of ShellSort: step 2

70509:1:0
91658:1:0

5031157:2:1

gap i:C:
M

65252026:3:2
50155:1:0

65254:1:0
1583:1:0

2522:1:12

709131205065152825

52

Example of ShellSort: step 3

2082:1:0

9170659:2:1
91658:1:0

6550317:2:1

gap i:C:M

65316:1:0
31255:1:0

25204:1:0
201583:2:1

821:1:01
709150653125152082

53

Time complexity of ShellSort
• Heavily depends on gap sequences
• Shell's sequence: n/2, n/4, …, 1:

O(n2) worst; O(n1.5) average
• “Odd gaps only” (if even: gap/2 + 1):

O(n1.5) worst; O(n1.25) average
• Heuristic sequence: gap/2.2: better than

O(n1.25)
• A very simple algorithm with an extremely

complex analysis

