g(n) is O(f(n)), or g(n) = O(f(n))

Function g(n) is M| fmyn
“Big-Oh” of f(n) if,
starting from
some n > n,,
there always
exist a function
c-f(n) that grows
faster than the
function g(n)

n; n,
L I TP L L I O e
o " ao ! de ! o ! mo e e n

n>(n,= 238y gn)<(fin)=n)
n=(n,= 1000} gn)<{ fin)=03n)

1

“Big-Oh” O(...) : Informal Meaning

+ gis O(f) means that the order of time
complexity of the function g is
asymptotically less than or equal to the
order of time complexity of the function
— Asymptotical behaviour < only for the large
values of n

- Two functions are of the same order when
they each are “Big-Oh” of the other: f= O(g)
AND g =0O(f)

— This property is called “Big-Theta”: g = O(f)

“Big-Oh” O(...) : Informal Meaning

g is O(f) means that the algorithm with
time complexity g runs (for large n) at
least as fast, within a constant factor, as
the algorithm with time complexity £

Big-Omega

» The function g(n) is Q(f(n)) iff there exist
a real positive constant ¢>0and a
positive integer n, such that g(n) = cf(n)
foralln2n,

— Big Omega is just opposite to Big Oh

. {g(n) } — It generalises the concept of “lower bound”
lim f(n) =c (2) in the same way as Big Oh generalises
n—ee the concept of “upper bound” (<)
— If f(n) is O(g(n)) then g(n) is Q(f(n))
Big-Theta Upper bounds of complexity

» The function g(n) is ©(f(n)) iff there exist
two real positive constants ¢, >0 and c,
> (and a positive integer n, such that:

¢, f(n) 2 g(n) 2 c,f(n) for all n 2 n,

— Whenever two functions, f and g, are of the
same order, g(n) is O(f(n)), they are each
Big-Oh of the other: g(n) is O(f(n)) AND f(n)
is O(g(n))

“Big-Oh” specifies an upper bound of
complexity so that the following (and
like) relationships hold:

1=0(logn)=0(n) =0(nlogn)=...

log n=0(n) = O(n log n) = 0(n%; a>1=...
n=0(n log n) =0(n%; a>1=0(2") =...
nlogn=0(n%; o>1=0("; k>a=...
n*=0n%; o>k=02" = ...

Time complexity growth

f(n) Number of data items processed per:
1 minute | 1 day 1 year 1
century
n 10 14,400 | 5.26-10° | 5.26-108
nlogn 10 3,997 883,895 | 6.72-107
nls 10 1,275 65,128 1.40-10°
n? 10 379 7,252 72,522
n3 10 112 807 3,746
2n 10 20 29 35

Beware exponential
complexity

©If a linear, O(n), algorithm processes 10
items per minute, then it can process
14,400 items per day, 5,260,000 items
per year, and 526,000,000 items per
century.

olf an exponential, 0", algorithm
processes 10 items per minute, then it
can process only 20 items per day and
35 items per century...

Ascending order of complexity

1 < loglogn <« logn<« n<«nlogn
—n%lca<2 P e—n"m>3¢2"...

Questions:
—Where is the place of »* log n?
—Where is the place of n>7°?

Answer:

1 < loglogn«logn<« n«nlogn

—n% 1<a<2 —n?n?? «—nd
n’log né— n"; m>3 2" ...

* The exact running time function is not
important, since it can be multiplied by
any arbitrary positive constant.

« Two functions are compared only
asymtotically, for large n, and not near
the origin
— If the constants involved are very large, then

the asymptotical behaviour is of no practical
interest!

Example

Let algorithms A and B have running times
Tx(n) =20n ms and Tg(n) = 0.1n log,n ms
In the “Big-Oh”sense, A is better than B...
But: on which data volume can A
outperform B?
Ta(n) < Tg(n) if 20n < 0.1n log,n, or
log,n > 200, that is, when n >2200~ 10 |

Thus, in all practical cases B is better than
A..

12

Example

Let algorithms A and B have running times
Ta(n) =20n ms and Tg(n) = 0.1n ms

Examples

* In the “Big-Oh”sense, A is better than B... Run?mlg time lT(n) CompIeX|2ty O
« But: on which data volumes A outperforms n+100n+ o)
B? 0.0017° +n2+1 O(n?)
T\(n) < Tg(n) if 20n < 0.122, or N> 200 2n O(n)

« Thus A is better than B in most practical 2 O(8") as 2°=(2°)"
cases except for n <200 when B becomes 23tn 0O(2") as 23n=23.2n
faster... 2.3n 0(3")

Examples Example

Runnin g time T(n) Com P | eXity O(n) Assume that we have an algorithm with a running time

0.0001 »n + 10000 O(n) T(I’l) — \/;

100000 nt 10000 O(n) that can process x input items on your computer.
00001 I’l2 + 10000 n O(I’lz) What input size it can process if the computer is 100 times faster?
100000 72 + 10000 7 O(n?) 7

30 log,,(23n) O(log 1) as Ve ST
actually NOT that | log(ab)=log.a +log b
hard...

Worst-Case Performance

* Upper bounds: simple to obtain

» Lower bounds: a difficult matter...

» Worst case data may be unlikely to be met in
practice

» Unknown “Big-Oh” constants ¢ and n, may not be
small

* Inputs in practice lead to much lower running times

+ Example: the most popular fast sorting algorithm,
QuickSort, has O(#?) running time in the worst case
but in practice the time is O(n log n)

Average-Case Performance

Estimate average time for each
operation

Estimate frequencies of operations

May be a difficult challenge... (take
COMPSCI.320 for details)

May be no natural “average” input at all

May be hard to estimate (average time
for each operation depends on data)

Recurrence Relations

Divide-and-conquer principle:

» to divide a large problem into smaller
ones and recursively solve each
subproblem, then

» to combine solutions of the subproblems
to solve the original problem

Running time: by a recurrence relation
combining the size and number of the
subproblems and the cost of dividing the
problem into the subproblems

“Telescoping” a Recurrence

» Recurrence relation and its base
condition (i.e., the difference equation
and initial condition):

T(n)=2-T(n-1)+1; T(0)=0

+ Closed (explicit) form for T(n) by

“telescoping”:

20

We substitute the unknown term T(n-1), T(n-2),,, until the base case
T(1)=1.

T(n)=20T(n-2)+1)+1
T(n)=2>T(n-2)+2"+1
T(n)=2’T(n—=3)+2>+2' +1

T(n)=2T(n-1)+1
T(n-1)=2T(n-2)+1

T()=2T(0)+1 T(n)=2"T(0)+ 2" +...+2+1

T(n)=2"-1

21

“Telescoping” = Substitution
T(n)=2T(n—-1)+1
2T(n-1)=2T(n-2)+2
2’ T(n-2)=2"T(n-3)+2

2" T(2) = 2" T(0)+ 2"

T(n)=1+2+2°+..+2""'=2"-1

22

Basic Recurrence: 1

n(n+1)
2

T(n)=T(n-1)+n & T(n)=

T(n)=Tn-1)+n
Tn-1)=T(n-2)+n-1

T(2)=T()+2
T(1) =1

23

1: Explicit Expression for T(n)

T(m)=T(n-1)+n
=T(n=2)+(n=1)+n
=m+(n—l)+n

w=TQ)+3+...+(n-2)+(n—-1)+n
=T)+2+..+(n-2)+(n-D+n

1424t (1= (1) n = 0D

24

Guessing to Solve a Recurrence

» Guess a hypothetic solution T(n); n 2 0 from a
sequence of numbers T(0), T(1), T(Q2), ...,
obtained from the recurrence relation

* Prove T(n) by math induction:

Base condition: T holds for n = n,, ,e.g. T(0) or
T(1)

Induction hypothesis to verify: for every n > ny,,
if T holds for n — 1, then T holds for n

Strong induction: if T holds for n,,, ..., n - 1,
then...

25

Explicit Expression for T(n)

« T()=1TQ)=1+2=3;T3)=3+3=6;

T(4) = 6 + 4 =10 = Hypothesis:

* Base condition holds: T(1)=12/2=1
« If the hypothetic closed-form relationship T(n)

holds for n — 1 then it holds also for n:

» Thus, the expression for T(n) holds for all n >

1

26

Basic Recurrence: 2

* Repeated halving principle: halve the
input in one step:

T(n)=T(n/2)+1 < T(n)=log,n
+ “Telescoping” (for n =2m):
T2")=TQ2") +1 T(2*)=T(2")+1
TR"H)=TQ2"?)+1 T2H=TQ2%)+1
T(2°)=0

27

2: Explicit Expression for T(n)

T2™")=TR2"")+1
=TQ") +1+1
=TRH+1+14+..+1

=T +1+1+...+1+1
T2")=m = T(n)=log,n

28

Basic Recurrence: 3

» Scan and halve the input:
T(n)=T(n/2)+n < T(n)=2n
* “Telescoping” (for n =2m):
TQ2")=TQR"")+2" T(2*)=T(2")+2*
TQ2"H)=T2"?)+2"" T2")=T(2")+2'
T(2%) =1

29

3: Explicit Expression for T(n)

TQR")=TQ2"")+2"
=T+ 25+ 42" 42"
=TQ20)+2 +22 4. 42" 42"
TQ2")=2""-1 = T(n)=2n

30

Basic Recurrence: 4

» “Divide-and-conquer” prototype:
T(n)=2T(n/2)+n < T(n)=nlog,n

« “Telescoping”: T(n) _ T(n/2)

+1; T(1)=0
n n/2 M

m m—1
* For n=2" > T(sz): T(sz—l)+1

31

4: Explicit Expression for T(n)
T(2")/2" =T2" ™) /2" +1
=T(2"?)/2" +1+1
L=T(2Y/2" +14+ . +1+1
=T(2%)/2° +1+1+..+1+1

=0+1+..+1=m

TQ2")=m-2" = T(n)=nlog,n

32

General “Divide-and-Conquer”

Theorem: The recurrence

with integer constants a>1 and 5>2 and positive
constants ¢ and & has the solution:

on®*y if b'<a
T(n)=<0(n*logn) if b"=a
on*y if b >a

Proof by telescoping:
n=b"=T®")=aT(h"")+ch™

33

General “Divide-and-Conquer”
» Telescoping:
T(")=al (" ")+ch™
aT(b'"’l) = azT(b’"’z) +ach™ Yk
azT(b’H) = a3T(b'"’3) +ach" "

a"'T(b)=a"T()+a" " cb*

T(b")=a"c+a""'cb* +...+ ach" ™" +cb™

m m ’
—t 7tk k
_ CZ a"b* = ca” (,,4)

1=0 1=0

34

.

Capabilities and Limitations

Rough complexity analysis cannot result
immediately in an efficient practical program but it
helps in predicting of empirical running time of the
program

“Big-Oh” analysis is unsuitable for small input and
hides the constants ¢ and n, crucial for a practical
task

“Big-Oh” analysis is unsuitable if costs of access
to input data items vary and if there is lack of
sufficient memory

But complexity analysis provides ideas how to
develop new efficient methods

35

Data Sorting

Ordering relation: places each pair o, B of
countable items in a fixed order denoted as (o,f3) or
<o, B>

Order notation: o <P (less than or equal to)
Countable item: labelled by a specific integer key

Comparable objects in Java: if an object can be
less than, equal to, or greater than another object:

object1.compareTo(object2) <0, =0, >0

36

Order of Data ltems

* Numerical order - by value:
5<5<6.45<22.79<...£1056.32

* Alphabetical order - by position in an
alphabet:
as<b<cs<d<s..=2z
Such ordering depends on the alphabet used:
look into any bilingual dictionary...

» Lexicographic order - by first differing
element:
5456 <5457 <5500 <6100 <...
pork < ward < word < work <

37

Features of ordering

* Relationon an array A= {a, b, ¢, ...} is:
—reflexive: a<a
—transitive: ifa<band b <c, then a<c
—symmetric: ifa<bandb<a,then a=»5
 Linear order if for any pair of elements a
and beithera<borb<a: a<b<c=<..
» Partial order if there are incomparable
elements

38

Insertion Sort

+ Splits an array into a unordered and
ordered parts

» Sequentially contracts the unordered part,
one element per stage:

ordered part unordered part
Ay, ..., i a, ..., a

e Stagei=1,...,n-1:

n—1

N—i unordered and i ordered
elements

39

Example of Insertion Sort

* N, - number of comparisons per insertion
* N, - number of moves per insertion

13 | 18 | 35 | 44 | 15| 10 | 20 | N, | N,
15 | 44 < | -
15 | 35 < | -
15 | 18 < | -
15 >
13 |15 |18 | 35| 44 | 10| 20 | 4 3

40

Example of Insertion Sort

13 | 15| 18 | 35 | 44 | 10 | 20 | N, | N,
10 | 44 < —

10 | 35 < | -

10 | 18 < | >

10 | 15 < | >

10 | 13 < | >
10 | 13 | 15 | 18 | 35 | 44 | 20 5 5

41

Implementation of Insertion Sort

begin InsertionSort (integer array a of size n)

1. fori« 1whilei<n stepi«—i+1do
2. Syp <—alil;, ki -1

3. while &> 0 AND sy, < a[k] do

4. alk+1]—a[k]; kek-1
5. end while

6. al k+1] < simp

7. end for

end InsertionSort

42

Average Complexity at Stage i

e [+ 1 positions to place a nextitem: 012 ... i
-li

* j—j+ 1 comparisons and i —j moves for
each position j=1i,i—1, ..., 1

* i comparisons and i moves for position j=0

» Average number of comparisons:

1+2+...+i+i i i
Ei == = — 4 —
i+1 2 i+l

43

Total Average Complexity

» n— 1 stages for n input items: the total
average number of comparisons:

E=E+E,+.+E | :%.,.{Tn_H
(e))sr (ie)
=L+ 2+. (=) +(E+ 2+ L)

n

_ (n=Dn 1 1 1
—T+I’l—(5+§+...+;)

* H,=Inn+0.577 when n — « is the n-th harmonic
number

44

Analysis of Inversions

« Aninversion in an array A = [a,,a,, ..., a,] is any
ordered pair of positions (i, j) such that i <j but a;
>a;eg., [...,2,..., 1] or [100, ..., 35, ...]

A #invers. | Ajgverse | 7 invers. | Total #
3,2,5 1 52,3 2 3
3,2,5,1 4 1,523 2 6
1,2,3,4,7 0 7,4,3,2,1 10 10

45

Analysis of Inversions

» Total number of inversions both in an arbitrary
array A and its reverse A, .. IS €qual to the
total number of the ordered pairs (i </):

n) (n=1)n
2] 2

» A sorted array has no inversions
* Areverse sorted array has (z-D» inversions
2

46

Analysis of Inversions

» Exactly one inversion is removed by
swapping two neighbours a,_ | > a;

» An array with & inversions results in O(n +
k) running time of insertionSort

* Worst-case time:

¢, or o(n*)
* Average-case time: ,)
c-, or O(n”)

47

More Efficient Shell's Sort

» Efficient sort must eliminate more than just
one inversion between the neighbours per
exchange! (insertion sort eliminates one inversion
per exchange)

* D.Shell (1959): compare first the keys at a
distance of gap,, then of gap,, < gap;, and so on
until of gap,=1

+ After a stage with gap,, all elements spaced gap,
apart are sorted; it can be proven that any gap,-
sorted array remains gap,-sorted after being then
gap,-sorted

48

Implementation of ShellSort

begin Shell Sort (integer array a of size n)

Example of ShellSort: step 1

1. for gap « Ln/2] while gap > 0 gap |i:C: Data to be sorted
sjtep gap < (ifgap=2then1else Lgap/ M 25|/ 8 | 2 191(70(50[20|31| 15|65
22])do . o 5 |51:0|25 50
2. fori <« gap whilei<nstepi«—i+1do
3. Simp < a[l], k—1i 6:1:0 8 20
4. while(k= gap AND sy, <a[k—gap] do 7:1:0 2 31
5. al[kl<—a[k—gap]; k — k- gap 8:1:1 15 91
6. end while 9:1:1 65 70
7. k ; 8. end for; 9. end f
AL k] = Sumpi 8. end for; 9. end for 25/ 8 | 2 [156550 2031|9170
end Shell Sort
49 50
Example of ShellSort: step 2 Example of ShellSort: step 3
gap [i:C: |25 8 | 2 |[15|65(50[20|31|91 |70
M gap|iCM | 2 | 8 |20|15[25|31|65|50|91|70
2 2:1:1| 2 25 1 1:1:0 2| 8
3:1:0 8 15 2:1:0 8 | 20
4:1:0 25 65 3:2:1 8 | 15 | 20
5:1:0 15 50 4:1:0 20|25
6:3:2 | 2 20 25 65 510 il
= 6:1:0 31| 65
7:21 15 31 50 721 311 50 | o5
8:1:0 65 91 8:1:0 65 | 9f
9:1:0 50 70 9:2:1 65 | 70 | 91

51

52

Time complexity of ShellSort

» Heavily depends on gap sequences
» Shell's sequence: "/,,"/,, ..., 1:
O(n?) worst; O(n'>) average
“Odd gaps only” (if even: 920/, + 1):
O(n') worst; O(n!*) average
* Heuristic sequence: 92/, ,: better than
O(nl‘25)

+ A very simple algorithm with an extremely
complex analysis

53

