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Function g(n) is 
“Big-Oh” of f(n) if, 
starting from 
some n > n0,
there always 
exist a function 
c·f(n) that grows 
faster than the 
function g(n)

g(n) is O(f(n)), or g(n) = O(f(n))
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“Big-Oh” O(…) : Informal Meaning

• g is O(f) means that the order of time 
complexity of the function g is 
asymptotically less than or equal to the 
order of time complexity of the function f
– Asymptotical behaviour ↔ only for the large 

values of n
– Two functions are of the same order when 

they each are “Big-Oh” of the other: f = O(g)
AND g = O(f)

– This property is called “Big-Theta”: g = Θ(f)
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g is O(f) means that the algorithm with 
time complexity g runs (for large n) at 
least as fast, within a constant factor, as 
the algorithm  with time complexity f
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“Big-Oh” O(…) : Informal Meaning
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• The function g(n) is Ω(f(n)) iff there exist 
a real positive constant c > 0 and a 
positive integer n0 such that g(n) ≥ cf(n)
for all n ≥ n0
– Big Omega is just opposite to Big Oh
– It generalises the concept of “lower bound”

(≥) in the same way as Big Oh generalises 
the concept of “upper bound” (≤)

– If f(n) is Ο(g(n)) then g(n) is Ω(f(n)) 

Big-Omega
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• The function g(n) is Θ(f(n)) iff there exist 
two real positive constants c1 > 0 and c2
> 0 and a positive integer n0 such that:

c1f(n) ≥ g(n) ≥ c2f(n) for all n ≥ n0
– Whenever two functions, f and g, are of the 

same order, g(n) is Θ(f(n)), they are each 
Big-Oh of the other: g(n) is Ο(f(n)) AND f(n)
is Ο(g(n)) 

Big-Theta
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“Big-Oh” specifies an upper bound of 
complexity so that the following (and 
like) relationships hold: 

1 = O(log n) = O(n) = O(n log n) = …
log n = O(n) = O(n log n) = O(nα); α > 1 = …
n = O(n log n) = O(nα); α > 1 = O(2n) =…
n log n = O(nα); α > 1 = O(nk); k > α = …
nk = O(nα); α > k = O(2n) = …

Upper bounds of complexity
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352920102n

3,74680711210n3

72,5227,25237910n2

1.40⋅10665,1281,27510n1.5

6.72⋅107883,8953,99710n log n
5.26⋅1085.26⋅10614,40010n

1 
century

1 year1 day1 minute
Number of data items processed per:f(n)

Time complexity growth
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☺If a linear, O(n), algorithm processes 10
items per minute, then it can process 
14,400 items per day, 5,260,000 items 
per year, and 526,000,000 items per 
century. 

☻If an exponential, O(2n), algorithm 
processes 10 items per minute, then it 
can process only 20 items per day and 
35 items per century...

Beware exponential 
complexity
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1 ← log log n ← log n ← n ← n log n
← nα; 1<α <2 ← n2 ← n3 ← nm; m > 3 ← 2n …

Questions:
– Where is the place of n3 log n?
– Where is the place of  n2.79? 

Ascending order of complexity
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1 ← log log n ← log n ← n ← n log n
← nα; 1<α <2 ← n2 ←n2.79 ← n3 ←
n3log n← nm; m > 3 ← 2n …

Answer: 
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• The exact running time function is not 
important, since it can be multiplied by 
any arbitrary positive constant. 

• Two functions are compared only 
asymtotically, for large n, and not near 
the origin
– If the constants involved are very large, then 

the asymptotical behaviour is of no practical 
interest!
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• Let algorithms A and B have running times 
TA(n) = 20n ms and TB(n) = 0.1n log2n ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volume can A

outperform B?
TA(n) < TB(n) if 20n < 0.1n log2n, or
log2n > 200, that is, when n >2200 ≈ 1060 !

• Thus, in all practical cases B is better than 
A…

Example



3

13

Let algorithms A and B have running times 
TA(n) = 20n ms and TB(n) = 0.1n2 ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volumes A outperforms 

B?
TA(n) < TB(n) if 20n < 0.1n2, or n > 200

• Thus A is better than B in most practical 
cases except for n < 200 when B becomes 
faster…

Example
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Examples 

O(3n) 2⋅3n

O(2n) as 23+n≡23⋅2n23+n

O(8n) as 23n≡(23)n23n

O(n)23 n 
O(n3)0.001n3 + n2 + 1 
O(n2)n2 + 100 n + 1 

Complexity O(n)Running time T(n)
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Examples

O(log n) as 
logc(ab)=logca +logcb

30 log20(23n) 
actually NOT that 

hard…

O(n2)100000 n2 + 10000 n 
O(n2)0.0001 n2 + 10000 n 
O(n)100000 n + 10000 
O(n)0.0001 n + 10000 

Complexity O(n)Running time T(n)
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Example

Assume that we have an algorithm with a running time 

that can process x input items on your computer.

nnT =)(

What input size it can process if the computer is 100 times faster?

xn

xn

new

new

410

100

=

=
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• Upper bounds: simple to obtain
• Lower bounds: a difficult matter...
• Worst case data may be unlikely to be met in 

practice
• Unknown “Big-Oh” constants c and n0 may not be 

small
• Inputs in practice lead to much lower running times
• Example: the most popular fast sorting algorithm, 

QuickSort, has O(n2) running time in the worst case 
but in practice the time is O(n log n)

Worst-Case Performance
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• Estimate average time for each 
operation

• Estimate frequencies of operations 
• May be a difficult challenge... (take 

COMPSCI.320 for details)
• May be no natural “average” input at all
• May be hard to estimate (average time 

for each operation depends on data)

Average-Case Performance
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Divide-and-conquer principle:
• to divide a large problem into smaller 

ones and recursively solve each 
subproblem, then

• to combine solutions of the subproblems
to solve the original problem

Running time: by a recurrence relation
combining the size and number of the 
subproblems and the cost of dividing the 
problem into the subproblems

Recurrence Relations
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• Recurrence relation and its base 
condition (i.e., the difference equation 
and initial condition):

T(n) = 2⋅T(n−1) + 1; T(0) = 0
• Closed (explicit) form for T(n) by 

“telescoping”: 

“Telescoping” a Recurrence

21
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Basic Recurrence: 1

2
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1: Explicit Expression for T(n)
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Guessing to Solve a Recurrence
• Guess a hypothetic solution T(n); n ≥ 0 from a 

sequence of numbers T(0), T(1), T(2), …,
obtained from the recurrence relation

• Prove T(n) by math induction:
Base condition: T holds for n = nbase ,e.g. T(0) or 

T(1)
Induction hypothesis to verify: for every n > nbase,  

if T holds for n − 1, then T holds for n
Strong induction: if T holds for nbase, …, n - 1, 

then…
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Explicit Expression for T(n)
• T(1) = 1; T(2) = 1 + 2 = 3; T(3) = 3 + 3 = 6; 

T(4) = 6 + 4 = 10 ⇒ Hypothesis:
• Base condition holds: T(1) = 1·2 / 2 = 1
• If the hypothetic closed-form relationship T(n) 

holds for n − 1 then it holds also for n:

• Thus, the expression for T(n) holds for all n >
1
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Basic Recurrence: 2

• Repeated halving principle: halve the 
input in one step:

• “Telescoping” (for n = 2m):
nnnn 2log)T(      1)2T()T( ≅⇔+=
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2: Explicit Expression for T(n)
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Basic Recurrence: 3
• Scan and halve the input:

• “Telescoping” (for n = 2m):
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3: Explicit Expression for T(n)
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Basic Recurrence: 4

• “Divide-and-conquer” prototype:

• “Telescoping”:

• For 
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4: Explicit Expression for T(n)
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General “Divide-and-Conquer”
Theorem: The recurrence

with integer constants a≥1 and b≥2 and positive 
constants c and k has the solution:

Proof by telescoping:
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General “Divide-and-Conquer”
• Telescoping:
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Capabilities and Limitations
• Rough complexity analysis cannot result 

immediately in an efficient practical program but it 
helps in predicting of empirical running time of the 
program

• “Big-Oh” analysis is unsuitable for small input and 
hides the constants c and n0 crucial for a practical 
task

• “Big-Oh” analysis is unsuitable if costs of access 
to input data items vary and if there is lack of 
sufficient memory

• But complexity analysis provides ideas how to 
develop new efficient methods
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Data Sorting

• Ordering relation: places each pair α, β of 
countable items in a fixed order denoted as (α,β) or 
<α,β>

• Order notation: α ≤ β (less than or equal to)
• Countable item: labelled by a specific integer key
• Comparable objects in Java: if an object can be 

less than, equal to, or  greater than another object:
object1.compareTo( object2 ) <0, =0, >0
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Order of Data Items
• Numerical order - by value:

5 ≤ 5 ≤ 6.45 ≤ 22.79 ≤ … ≤ 1056.32
• Alphabetical order - by position in an 

alphabet:
a  ≤ b  ≤ c ≤ d  ≤ … ≤ z

Such ordering depends on the alphabet used: 
look into any bilingual dictionary...

• Lexicographic order - by first differing 
element:

5456 ≤ 5457 ≤ 5500 ≤ 6100 ≤ …
pork  ≤ ward  ≤ word  ≤ work  ≤

…
38

Features of ordering 
• Relation on an array A = {a, b, c, …} is:

– reflexive: a ≤ a
– transitive: if a ≤ b and b ≤ c, then  a ≤ c
– symmetric: if a ≤ b and b ≤ a, then  a = b

• Linear order if for any pair of elements a
and b either a ≤ b or b ≤ a:     a ≤b ≤ c ≤ …

• Partial order if there are incomparable 
elements
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Insertion Sort
• Splits an array into a unordered and 

ordered parts 
• Sequentially contracts the unordered part, 

one element per stage:
ordered part unordered part
a0,  …,  ai−1 ai,  …,  an−1

• Stage i = 1, …, n−1:
n− i unordered and i ordered 

elements
40

Example of Insertion Sort 
• Nc - number of comparisons per insertion
• Nm - number of moves per insertion

3

→
→
→
Nm

420104435181513
≥15
<1815
<3515
<4415
Nc20101544351813
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Example of Insertion Sort 

5
→
→
→
→
→
Nm

520443518151310
<1310
<1510
<1810
<3510
<4410
Nc20104435181513
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Implementation of Insertion Sort 
begin InsertionSort ( integer array a of size n ) 
1. for i ← 1 while i < n step i ← i + 1 do
2. stmp ← a[ i ];      k ← i  − 1
3. while k ≥ 0 AND stmp < a[k] do
4. a[ k +1 ] ← a[ k ];       k ← k − 1
5. end while
6. a[ k+1 ] ← stmp
7. end for
end InsertionSort
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Average Complexity at Stage i 
• i + 1 positions to place a next item: 0 1 2 … i 

-1 i
• i − j + 1 comparisons and i − j moves for 

each position j = i, i−1, …, 1
• i comparisons and i moves for position j = 0
• Average number of comparisons:
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i
ii
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iiEi
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Total Average Complexity
• n − 1 stages for n input items: the total 

average number of comparisons:

• Hn ≅ ln n + 0.577 when n → ∞ is the n-th harmonic
number 
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Analysis of Inversions
• An inversion in an array A = [a1,a2, …, an] is any 

ordered pair of positions (i, j) such that i < j but ai
> aj: e.g., […, 2,…, 1] or [100, …, 35, …]

10107,4,3,2,101,2,3,4,7
621,5,2,343,2,5,1
325,2,313,2,5

Total ## invers.Areverse# invers.A
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Analysis of Inversions

• Total number of inversions both in an arbitrary 
array A and its reverse Areverse is equal to the 
total number of the ordered pairs ( i < j ): 

• A sorted array has no inversions
• A reverse sorted array has              inversions

2
)1(

2
nnn ⋅−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2
)1( nn −
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Analysis of Inversions

• Exactly one inversion is removed by 
swapping two neighbours ai−1 > ai

• An array with k inversions results in O(n + 
k) running time of insertionSort

• Worst-case time:    

• Average-case time:
)O(   , 2

2
2 nc n   or

)O(   , 2
4
2 nc n   or

48

More Efficient Shell's Sort
• Efficient sort must eliminate more than just 

one inversion between the neighbours per 
exchange! (insertion sort eliminates one inversion 
per exchange)

• D.Shell (1959): compare first the keys at a 
distance of gapT, then of gapT-1 < gapT, and so on 
until of gap1=1

• After a stage with gapt, all elements spaced gapt
apart are sorted; it can be proven that any gapt-
sorted array remains gapt-sorted after being then 
gapt-1-sorted
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Implementation of ShellSort
begin Shell Sort ( integer array a of size n )
1. for gap ← ⎣n ⁄ 2⎦ while gap > 0

step gap ← ( if gap = 2 then 1 else ⎣gap ⁄
2.2⎦ ) do

2. for i ← gap while i < n step i ← i + 1 do 
3. stmp← a[i];  k ← i
4. while( k ≥ gap AND stmp < a[ k − gap ] do
5. a[ k ] ← a[ k − gap ];   k ← k − gap             
6. end while
7. a[ k ] ← stmp;  8.  end for; 9.  end for
end Shell Sort
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Example of ShellSort: step 1 

709131205065152825
70659:1:1

91158:1:1
3127:1:0

2086:1:0
50255:1:05

651531205070912825
Data to be sortedi:C:

M
gap

51

Example of ShellSort: step 2 

70509:1:0
91658:1:0

5031157:2:1

gap i:C:
M

65252026:3:2
50155:1:0

65254:1:0
1583:1:0

2522:1:12

709131205065152825
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Example of ShellSort: step 3 

2082:1:0

9170659:2:1
91658:1:0

6550317:2:1

gap i:C:M

65316:1:0
31255:1:0

25204:1:0
201583:2:1

821:1:01
709150653125152082
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Time complexity of ShellSort
• Heavily depends on gap sequences
• Shell's sequence: n/2, n/4, …, 1: 

O(n2) worst; O(n1.5) average 
• “Odd gaps only” (if even: gap/2 + 1):

O(n1.5) worst; O(n1.25) average 
• Heuristic sequence: gap/2.2: better than 

O(n1.25)
• A very simple algorithm with an extremely 

complex analysis


