Introduction to Algorithms, **Data structures** and Formal Languages

3 assignments(25%), midterm test(10), final (65) Textbook: M.J. Dinneen, G.Gimelfarb`, M.C. Wilso Thanks to A/Prof Georgy Gimel'farb for most of the slides

Gisela Klette Office hours: Tue, Thu, Fri, 2.30-3.30 p.m. Room: Tamaki, 371, 318 Phone: 86826 E-mail: g.klette@auckland.ac.nz

What is an Algorithm?

Algorithm

Muhammed ibn Musa al-Khwarizmi (770-840) -step by step rules for +,-,*,/

Def. 1 (informal):

An algorithm is a list of unambiguous rules that specify successive steps to solve a problem.

In other words: - a precisly specified procedure for solving a problem - a computable set of steps to achieve a desired result

Analysis of Algorithms

- · Analysis of algorithms is a field in computer science whose overall goal is an understanding of the complexity of algorithms.
 - · It is more important to have an efficient algorithm than a fast machine. Why?

Def. 2 (informal):

An elementary operation is a computer instruction executed in a single time unit (computing step).

Programs are large sets of ordinary arithmetic and logical oprations such as negation, addition, substruction, mutiplication, division, boolean oprations, binary comparisons etc. These basic computer instructions are elementary operations.

Def. 3 (informal): The running (computing) time of an algorithm is the number of elementary operations.

How to compare algorithms?

- by domain of definition legal inputs
- by correctness correct result for a legal input
- by efficiency-time and memory requirements

Efficiency of algorithms

 We are interested to estimate the running time of an algorithm and the memory space in order to compare algorithms independendly from the speed of the computer.

6

k divides every difference when the substraction is repeated up to i times until $n_{-}^{*}m_{-}m$

8

 $GCD(n,m) = GCD(n \mod m,m)$

Example for Euclid`s algorithm

9245 mod 7515=1730	540 mod 55=45
7515 mod 1730=595	55 mod 45=10
1730 mod 595=540	45 mod 10=5
595 mod 540=55	10 mod 5=0

8 steps in comparison to 7515 steps!

Example 3: Sum of subarrays

Given is an array of size n, to calculate are sums of all subarrays of size m.

For example:

$$s_{j} = \sum_{k=0}^{m-1} a[j+k]; \quad j = 0,..., n-m$$

 $a = [3,2,5,3,7,1,8], m = 3$
 $s_{0} = 10, s_{1} = 10, s_{2} = 15, s_{3} = 11, s_{4} = 16$

The total number of these subarrays is n-m+1, n is the number of elements in array a and m is the number of elements in the subarrays.

We can calculate the sum for each subarray, that means n-m+1 sums. In each subarray we have m elements, so the running time is proportional to $m^*(n-m+1)$.

If m=n/2 then $T(n)=c^{n}/2^{(n)}(n/2+1)=0.25cn^{2}+0.5cn$.

11

T(n) 0.25n² 0.5n 0.5n n % value 10 30 25 5 16.7 50 650 625 25 3.8 2,550 50 2.0 100 2,500 500 250 0.4 62,750 62,500 250,500 500 0.2 1000 250,000 5000 6,252,500 6,250,000 2,500 0.04 $T(n) \approx cn^2$ then $T(10) \approx 100T(1)$ 12

Brute-force Quadratic Approach
Quadratic time (two nested loops):

$$T(n) = c \frac{n}{2} (\frac{n}{2} + 1) \approx c'n^{2}$$
Quadratic relative changes:

$$T(n) = n^{2} T(1)$$

$$\begin{array}{l} \text{Better program} \\ \text{underset} \\ \text{u$$

Linear Time for same problem $s_{k+1} = s_k + a_{k+m} - a_k$ T(n) = c(m+2m) = 1.5cn

If T(1)=1µs					
Array size	n	2,000	2,000,000		
Subarray size	m	1,000	1,000,000		
Number of subsequences	m+1	1,001	1,000,001		
Quadratic algorithm	T(n)	4s	>46 days		
Linear algorithm	T(n)	3 ms	3 s		
			18		

How to Run Faster / Save Memory?

- (RF) Save results of computations that could be reused later for the same data
- (RF) Tabulate functions of one or two integer arguments with relatively small ranges
- (SM) Be careful with recursive computations (to be sure that the stack is not growing too fast!)

19

21

• (SM) Free in due time and reuse the allocated memory

Running time estimations

We have seen in lecture 1 (2 examples) that a careful analysis of a problem can replace a straightforward brute-force approach with a more effective one.

Simplifying assumptions: -All elemetary statements take the same amount of time (e.g. simple arithmetic assignments)

Running time estimations Simple statement sequence s1; s2; ...; sk T(n)=c as long as k is constant Simple loops for(i=0;i<n;i++) { s; } where s is executed in T(1)=c </pre> Time estimation: T(n)=cn

Running time estimations

20

22

```
• Nested loops
    for(i=0;i<n;i++)
        for(j=0;j<n;j++) { s; }</pre>
```

Time estimation: $T(n)=n \ cn=cn^2$

for k nested loops: $T(n)=cn^k$

• Loop index depends on outer loop index for (j=0; j<n; j++) for (k=0; k< j; k++) { s; } - Inner loop executed • 1, 2, 3, ..., n times $T(n) = c \frac{n(n+1)}{2} = c'n^{2}$ 22

Exan	nple:				
T(n)	$=0.25n^2$ -	$+0.5n \cong 0.5$	$.25n^2$		
n	T(n)	0.25n ²	0.5n	0.5n	
			value	%	
10	30	25	5	16.7	
50	650	625	25	3.8	
100	2,550	2,500	50	2.0	
500	62,750	62,500	250	0.4	
1000	250,500	250,000	500	0.2	
5000	6,252,500	6,250,000	2,500	0.04	
					29

m=1 for(j=1;j<n;j++) if j=m then m=m(n-1); for(k=0;k<n-1;k++){ s; } endfor endif endfor</pre>

31

Relative growth: G(n)=f(n)/f(5)

Complexity		Input size n			
Function	f(n)	5	25	125	625
Constant	1	1	1	1	1
Logarithm	log n	1	2	3	4
Linear	n	1	5	25	125
nlogn	n log n	1	10	75	500
Quadratic	n²	1	25	625	15,625
Cubic	n ³	1	125	15,625	5 ⁹
Exponential	2 ⁿ	1	220	2 ¹²⁰	2620

Some rules for "Big Oh"

41

1. Scaling:

$$cf \quad is \quad O \ (\ f \) \ \forall \ c \ > \ 0$$

2. Transitivity:

If h is O(g) and g is O(f)then h is O(f) Some rules for "Big Oh" 3. Rule of sums: If g_1 is $O(f_1)$ and g_2 is $O(f_2)$, then $g_1 + g_2$ is $O(\max \{f_1, f_2\})$ 4. Rule of products: If g_1 is $O(f_1)$ and g_2 is $O(f_2)$, then g_1g_2 is $O(f_1f_2)$

42

"Big-Oh" tool – Examples-1

Linear function:

g(n) = an + b; a > 0, is O(n) $g(n) \le (a + |b|)n \forall n \ge 1$

All following examples have time complexity O(n):

T(n) = 50 n; T(n) = n / 4 + 100 $T(n) = 10^8 + n;$ $T(n) = 50 + 10^{-8} n$

43

"Big-Oh" tool – Examples-2 Polynomial function: $P_{k}(n) = a_{k}n^{k} + a_{k-1}n^{k-1} + ... + a_{1}n + a_{0}$ $a_{k} > 0$, is $O(n^{k})$ All following examples have time complexity O(n^k): $T(n) = 3n^{2} + 5n + 1$ is $O(n^{2})$; $T(n) = 10^{-8}n^{3} + 10^{8}n^{2} + 3$ is $O(n^{3})$; $T(n) = 100 n^{8} + 5n^{6} + 1$ is $O(n^{8})$

"Big-Oh" tool – Examples-3
Exponential functions:
$$g(n) = 2^{n+k} \text{ is } O(2^n), 2^{n+k} = 2^k 2^n \forall n$$
$$g(n) = m^{n+k} \text{ is } O(l^n), l \ge m > 1:$$
$$m^{n+k} \le l^{n+k} = l^k l^n \quad \forall n, k$$

