
1

1

Introduction to Algorithms,
Data structures
and Formal Languages
3 assignments(25%), midterm test(10), final (65)
Textbook: M.J. Dinneen, G.Gimelfarb`, M.C. Wilson
Thanks to A/Prof Georgy Gimel'farb for most of the slides

Gisela Klette
Office hours: Tue, Thu, Fri, 2.30-3.30 p.m.
Room: Tamaki, 371, 318
Phone: 86826
E-mail: g.klette@auckland.ac.nz

2

What is an Algorithm?

Algorithm
Muhammed ibn Musa al-Khwarizmi (770-840)
-step by step rules for +,-,*,/

Def. 1 (informal):
An algorithm is a list of unambiguous rules
that specify successive steps to solve a problem.

In other words:
- a precisly specified procedure for solving a problem
- a computable set of steps to achieve a desired result

3

Analysis of Algorithms

• Analysis of algorithms is a field in
computer science whose overall goal is an
understanding of the complexity of
algorithms.

• It is more important to have an efficient
algorithm than a fast machine.
Why?

4

Def. 2 (informal):
An elementary operation is a computer instruction
executed in a single time unit (computing step).

Programs are large sets of ordinary arithmetic and logical oprations such as
negation, addition, substruction, mutiplication, division, boolean oprations,
binary comparisons etc. These basic computer instructions are elementary
operations.

Def. 3 (informal):
The running (computing) time of an algorithm is
the number of elementary operations.

5

How to compare algorithms?

• by domain of definition – legal inputs
• by correctness – correct result for a legal

input
• by efficiency-time and memory

requirements

6

• We are interested to estimate the running
time of an algorithm and the memory
space in order to compare algorithms
independendly from the speed of the
computer.

Efficiency of algorithms

2

7

Examples

• Example 1:
To calculate the sum: ∑

−

=

=
1

0

n

i
ias

We need n times the same elementary operation
(adding a number).

cnnT =)(

8

Example 2: Euclid`s Algorithm

),(mnGCDk =
1) “Brute-force” solution: -test all integers from 1 to the min{m,n}

We would need 7515 tests for GCT(9245,7515).

2) Euclids solution: if k divides both m and n, then it divides the difference
(n-m if n>m)

k divides every difference when the substraction is repeated up to i times
until n-i*m<m

),mod(),(mmnGCDmnGCD =

),(),(mmnGCDmnGCD −=

9

Example for Euclid`s algorithm

10 mod 5=0595 mod 540=55

45 mod 10=51730 mod 595=540

55 mod 45=107515 mod 1730=595

540 mod 55=459245 mod 7515=1730

8 steps in comparison to 7515 steps!

10

Example 3: Sum of subarrays

Given is an array of size n, to calculate are sums of all subarrays of size m.

For example:

[]

[]
16,11,15,10,10

3,8,1,7,3,5,2,3

,...,0;

43210

1

0

=====
==

−=+= ∑
−

=

sssss
ma

mnjkjas
m

k
j

11

The total number of these subarrays is n-m+1, n is
the number of elements in array a and m is the
number of elements in the subarrays.

We can calculate the sum for each subarray, that
means n-m+1 sums.
In each subarray we have m elements, so the
running time is proportional to m*(n-m+1).

If m=n/2 then T(n)=c*n/2*(n/2+1)=0.25cn2+0.5cn.

12

16.7
3.8
2.0
0.4
0.2
0.04

5
25
50
250
500
2,500

25
625
2,500
62,500
250,000
6,250,000

30
650
2,550
62,750
250,500
6,252,500

10
50
100
500
1000
5000

0.5n
%

0.5n
value

0.25n2T(n)n

)1(100)10()(2 TTthencnnT ≈≈

3

13

Brute-force program (two nested loops)

[] []
{

[]

[] []
}

;
);;0(int

;0
);;0(int

;1intint
...

ikaks
imiifor

ks
kmkkfor

mnews

+=+
++<=

=
++≤=

+=

14

Brute-force Quadratic Approach

2)1
2

(
2

)(ncnncnT ′≈+=

Quadratic time (two nested loops):

Quadratic relative changes:

)1()(2 TnnT =

15

Brute-force Quadratic Approach
Quadratic time complexity is due to operations that we repeat several times
In the innermost loop.

mkmkkk

mkkkk

aaas
aaas

+−+++

−++

+++=
+++=

111

11

...
...

16

Better program

[] []
[]

[] []

[] [] [] []
...

;111
);;;1(int

;0
);;;0(int

;00
;1intint

...

−−−++−=
++≤=

=+
++<=

=
+=

kamkaksks
kmkkfor

ias
imiifor

s
mnews

17

Linear Time for same problem

kmkkk aass −+= ++1

cnmmcnT 5.1)2()(=+=

18

If T(1)=1µs

3 s3 msT(n)Linear algorithm

>46 days4sT(n)Quadratic
algorithm

1,000,0011,001m+1Number of
subsequences

1,000,0001,000mSubarray size

2,000,0002,000nArray size

4

19

How to Run Faster / Save Memory?
• (RF) Save results of computations that

could be reused later for the same data
• (RF) Tabulate functions of one or two

integer arguments with relatively small
ranges

• (SM) Be careful with recursive
computations (to be sure that the stack is not
growing too fast!)

• (SM) Free in due time and reuse the
allocated memory

20

Running time estimations

We have seen in lecture 1 (2 examples) that a careful analysis
of a problem can replace a straightforward brute-force approach with
a more effective one.

Simplifying assumptions:
-All elemetary statements take the same amount of time
(e.g. simple arithmetic assignments)

21

Running time estimations

• Simple statement sequence
 s1; s2; …. ; sk
– T(n)=c as long as k is constant

• Simple loops
 for(i=0;i<n;i++) { s; }
 where s is executed in T(1)=c
– Time estimation: T(n)=cn

22

• Nested loops
for(i=0;i<n;i++)

for(j=0;j<n;j++) { s; }

Time estimation: T(n)=n cn=cn2

for k nested loops: T(n)=cnk

Running time estimations

23

• Loop index doesn’t vary linearly
 h = 1;
while (h <= n) {

s;
h = 2 * h;

 }
– h takes values 1, 2, 4, … until it exceeds n
– There are 1 + log2n iterations
– Time estimation: T(n)=clog2 n

Running time estimations

24

Running time estimations

•Loop index doesn’t vary linearly

General: after m loops:

ncnTmnm
knk

kk

mm

log)(,log1

1

=<<−
<<−

5

25

• Loop index depends on outer loop index
 for(j=0;j<n;j++)
 for(k=0;k<j;k++){

s;
}

– Inner loop executed
• 1, 2, 3, …., n times

n

Σ i =
i=1

n(n+1)
2

Running time estimations

2

2
)1()(ncnncnT ′=

+
=

26

Running time estimations

• Conditional switch statements are
more complicated:

{ }2121

21

,max)1()(
)()()(

TTTfTfnT
TelseTthenconditionif

truetrue <−+=

(f true – relative frequency of the true condition)

27

Running time estimations

• Function calls:

istatementoftimerunningTTT i

k

i
i −= ∑

=

,
1

• Function composition:

))(())(()))(((nfTngTngfT +=

28

Estimation rules

• Running time is proportional to the most
significant term in T(n).

• Once a problem size becomes large, the
most significant term is that which has the
largest power of n

• The most significant term increases faster
than the others.

29

Example:

16.7
3.8
2.0
0.4
0.2
0.04

5
25
50
250
500
2,500

25
625
2,500
62,500
250,000
6,250,000

30
650
2,550
62,750
250,500
6,252,500

10
50
100
500
1000
5000

0.5n
%

0.5n
value

0.25n2T(n)n

22 25.05.025.0)(nnnnT ≅+=

30

Estimation rules

• Constants of proportionality depend on the
compiler, language, processor,…

• Constants are ignored in algorithm
analysis

• Constants of proportionality can change by
use of faster hardware, it would not effect
the behaviour of an algorithm for a large
problem

6

31

Example
 m=1
 for(j=1;j<n;j++)

 if j=m then m=m(n-1);
 for(k=0;k<n-1;k++){

s;
}

 endfor
endif

 endfor

32

Running time
We defined running time as the number of elementary operations
for an algorithm depending on the number of input data.
-T(n) = cf(n)
-c depends on the computer, compiler, language, etc.
-type of function depends on the number of elementary operations

If c is unknown then we still know that the running time
increases by a factor:

Relative running time:

)(
)(

)(
)(

)(
)(

1

2

1

2

1

2

nf
nf

ncf
ncf

nT
nT ==

33

Running time

125.05.0
25.025.0

5.05.025.0)(

2

22

22

>∀≤

=

≤+=

nnn
nn

nnnnT

We realized that the quadratic part in T(n) increases much faster as
the linear part. We say: “the algorithm has an order of n2 “ or “is roughly
proportional to n2”.

0

10000000

20000000

30000000

40000000
50000000

60000000

1 3 5 7 9

Serie1
Serie2

34

Relative growth: G(n)=f(n)/f(5)
Input size nComplexity

2620212022012nExponential

5915,6251251n3Cubic

15,625625251n2Quadratic

50075101n log nnlogn

1252551nLinear

4321log nLogarithm

11111Constant

625125255f(n)Function

35

We can approximate running time.

Question: How can we precisely express
these approximations ?

We would like to find a way to say that an algorithm has the same time
complexity as another one or an algorithm is more complex as another one.

For this reason we introduce the following standard mathematical tools:

Big Oh, Big Theta, Big Omega

36

“Big-Oh” tool

Def.4:
Let f(n) and g(n) nonnegative valued functions
defined on nonnegative integers n.
Then g(n) is O(f(n)) (read: “g(n) is BigOh of f(n)”)
iff there exists a positive real constant c and a
positive n0 such that g(n) < cf(n) for all n>n0.

7

37

“Big-Oh” tool
If g(n) is O(f(n) then an algorithm with running time g(n) runs,
for large n , at most as fast, up to a constant factor,
as an algorithm with running time f(n).

2

22

22

25.05.0
25.025.0

5.05.025.0)(

nn
nn

nnnnT

≤

=

≤+= for n>1

0

10000000

20000000

30000000

40000000

50000000

60000000

Serie1

Serie2

T(n) – Serie1
f(n) – Serie2

38

“Big-Oh” tool
We also say: g(n) is asymptotically f(n) for large values of n.
It means that g(n) for large n may come closer and closer to f(n).
O(f(n)) specifies an asymptotic upper bound.

Looking at the graphs of these functions:
g(n) is O(f(n)) iff there exist a constant c such that
the graph of g(n) is always below or equal cf(n)
after a certain point n0.

g(n) is O(f(n)) means: The function g(n) is an element of the set of all functions
with time complexity O(f(n)).

39

“Big-Oh” tool - Examples

100/)(,5)(2nnfnng ==

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 (times 100 input data)

500
100/5

0

2

=⇒
=
n

nn

40

“Big-Oh” tool - Examples

41

Some rules for “Big Oh”
1. Scaling:

0)(>∀ cfOiscf

2. Transitivity:

)(
)()(

fOishthen
fOisgandgOishIf

42

3. Rule of sums:

Some rules for “Big Oh”

{ }),(max
),()(

2121

2211

ffOisggthen
fOisgandfOisgIf

+

4. Rule of products:

)(
),()(

2121

2211

ffOisggthen
fOisgandfOisgIf

8

43

“Big-Oh” tool – Examples-1

Linear function:

1)()(
)(,0;)(

≥∀+≤

>+=

nnbang
nOisabanng

All following examples have time complexity O(n):

nnTnnT
nnTnnT

88 1050)(;10)(
1004/)(;50)(
−+=+=

+==

44

“Big-Oh” O(…): Linear Complexity

45

“Big-Oh” tool – Examples-2
Polynomial function:

)(,0

...)(01
1

1
k

k

k
k

k
kk

nOisa

ananananP

>

++++= −
−

All following examples have time complexity O(nk):

)(15100)(
);(31010)(

);(153)(

868

32838

22

nOisnnnT
nOisnnnT

nOisnnnT

++=

++=

++=
−

46

“Big-Oh” tool – Examples-3

Exponential functions:

nOisng nkknnkn ∀== ++ 222),2(2)(

knlllm
mllOismng

nkknkn

nkn

,
:1),()(

∀=≤

>≥=
++

+

47

“Big-Oh” tool – Examples-4
Logarithmic functions:

0,log2loglog
);(loglog)(

2

2

>∀⋅=
=

mnnn
nOisnng

mm

m

Following examples have logarithmic complexity :

nnnT
nnT

55

10

logloglog)(
;100log5)(

+=
+=

48

Logarithmic “Big-Oh” Complexity

