Solutions for Assignment on Automata

(10 marks for each exercise)

Question 1. (a)	(b)
(c)	(d)

Question 2. DFA for union

DFA for intersection

Question 3. Let $\mathcal{A} = (S, I, T, F)$ be NFA that recognizes W. Construct NFA \mathcal{B} that recognizes Prefix(W). Let $\mathcal{B} = (S, I, T, F')$, that is the set of states, initial states, and the transitions in \mathcal{B} are the same as in \mathcal{A} . Let

 $F' = \{s \mid \text{there is } f \in F \text{ and there is a path from } s \text{ to } f \text{ in the transition diagram for } \mathcal{A}\},\$

in other words, F' is the set of states from which one can reach a state in F. Now it is easy to see that \mathcal{B} recognizes Prefix(W).

Question 4. Suppose that $L = \{a^n b^n c^n \mid n \in \omega\}$ is recognizable by NFA \mathcal{A} and \mathcal{A} has k states. Consider $w = a^k b^k c^k$. Due to the pumping lemma, there are strings x, y, and z such that $y \neq \lambda$, w = xyz, and $xy^i z \in L$ for every $i \ge 0$. There are several cases: 1) y

contains only a's, 2) y contains both a's and b's, 3) y contains only b's, 4) y contains both b's and c's, 5) y contains only c's. In any of these cases $xy^2z \notin L$. This contradiction shows that L is not FA recognizable.

Question 5. Suppose that $L = \{ww \mid w \in \{a, b\}^*\}$ is recognizable by NFA \mathcal{A} and \mathcal{A} has k states. Consider $w = a^k b^k a^k b^k$ and let $p = q_0, q_1, \ldots, q_k, q_{k+1}, \ldots, q_{4k}$ be an accepting run of \mathcal{A} on w. Then there exist $i < j \leq k$ such that $q_i = q_j$. This means that there are strings x, y, and z such that $w = xyz, xy^i z \in L$ for every $i \ge 0$, and y is a substring of the first a^k . As one can see $xy^2z \notin L$. This contradiction shows that L is not FA recognizable.

Question 6.

(a) Let $L = \{a^n, a^{n+p}, a^{n+2p}, a^{n+3p}, \ldots\}$ be an ultimately periodic language. Then L is recognizable by the following NFA $\mathcal{A} = (S, \{q_0\}, T, \{q_n\})$, where the set of states is $S = \{q_0, \ldots, q_n, r_1, \ldots, r_{p-1}\}, q_0$ is the only initial state and $\{q_n\}$ is the only final state. Note that if $p \leq 1$ then $S = \{q_0, \ldots, q_n\}$, and if n = 0 then q_0 is both initial and final state. The transition function T is defined as follows:

$$T(q_i) = \begin{cases} \{q_{i+1}\} & \text{if } i < n, \\ \{r_1\} & \text{if } i = n \text{ and } p > 1, \\ \{q_n\} & \text{if } i = n \text{ and } p = 1, \\ \varnothing & \text{if } i = n \text{ and } p = 0. \end{cases} \text{ and } T(r_i) = \begin{cases} \{r_{i+1}\} & \text{if } i$$

(b) Let L be FA recognizable language and $\mathcal{A} = (S, q_0, T, F)$ be a DFA that recognizes L. Since $\Sigma = \{a\}$ every state $s \in S$ has exactly one outgoing edge labeled with a in the transition diagram of \mathcal{A} . Consider a path p that is defined as follows. We start with initial state q_0 , then go to $q_1 = T(q_0, a)$, then go to $q_2 = T(q_1, a)$ and so on. We stop this procedure when the same state occurs twice in p. Let $p = q_0, \ldots, q_k, q_{k+1}, \ldots, q_{m-1}, q_m$ where $q_m = q_k$.

Now for each $i \leq m-1$ we will define a language L_i which is either ultimately periodic or empty. If $q_i \notin F$ then $L_i = \emptyset$. If $q_i \in F$ and i < k then $L_i = \{a^i\}$. If $q_i \in F$ and $k \leq i \leq m-1$ then $L_i = \{a^{i+n(m-k)} \mid n \in \omega\}$. It is not hard to see now that $L = \bigcup_{i \leq m-1} L_i$.

Therefore, L is a finite union of ultimately periodic languages.

Question 7.

(a) r = (a + b)* · a · (a + b) · b · (a + b)*.
(b) r = a* · b* · a* · a.
(c) r = (a + b)* · a · (a + b) · (a + b).
Question 8.

(a)