
Deterministic Finite Automata

Bakhadyr Khoussainov

Computer Science Department, The University of Auckland, New Zealand
bmk@cs.auckland.ac.nz

In this lecture we introduce deterministic finite automata, one of the foundational concepts
in computing sciences. Finite automata are the simplest mathematical model of computers.
Informally, a finite automaton is a system that consists of states and transitions. Each state
represents a finite amount of information gathered from the start of the system to the present
moment. Transitions represent state changes described by the system rules. Practical applica-
tions of finite automata include digital circuits, language design and implementations, image
processing, modeling and building reliable software, and theoretical computing.

1 Strings and languages

Recall that an alphabet is a finite set Σ of symbols. In most cases, our alphabets contain symbols
a, b, c, d, If Σ contains k letters then we say that Σ is a k-letter alphabet. A 1-letter alphabet
is called a unary alphabet, and a 2-letter alphabet is a binary alphabet. We will often deal
with the binary alphabet {a, b}.

Let Σ be an alphabet. The elements of the alphabet are called input symbols. A finite
sequence of symbols from Σ is called a string of the alphabet. Sometimes strings are also called
words. Thus, each string is of the form σ1σ2 . . . σn, where each σi is a symbol of the alphabet.
The length of a given string is the number of symbols it has. Thus, the length of strings aaab,
bababa, and bb are 4, 6, and 2, respectively. There is a special string whose length is 0 called the
empty string. We denote this string by λ. Using mathematical induction, it is easy to show
that the number of strings of length n of a k-letter alphabet Σ is equal to kn.

Let Σ be an alphabet. The set of all strings over the alphabet Σ is denoted by Σ⋆. Thus,

Σ⋆ = {σ1σ2 . . . σm | σ1, σ2, . . . , σm ∈ Σ, m ∈ N}.

Note that when m = 0, we have the empty string λ and therefore λ ∈ Σ⋆. We denote the strings
of the alphabet by the letters u, v, w,

Let u and v be strings. Then the concatenation of these two strings, denoted by u · v, is
obtained by writing down u followed by v. For example, aab · bba produces the string aabbba. It
is clear that the concatenation operation on words satisfies the equality u · (v · w) = (u · v) · w
for all words u, v, w. Note that λ · u = u · λ for any string u. Often, instead of writing u · v we
may omit the dot · sign and write uv instead.

Let u be a string. The notation un represents the string obtained by writing down u exactly
n times. Thus, un is the string obtained by concatenating u to itself n times. For example,
(ab)3 = ababab. When n = 0 then un is the empty string λ for any string u.

Let u and w be strings. We say that w is a substring of u if w occurs in u. More formally,
w is a substring of u if u = u1wu2 for some strings u1 and u2. For example, ab is a substring of
aaabbbbaa while aba is not. Clearly, every string u is a substring of itself.

We say that w is a prefix of u if u can be written as wu1. For example, the prefixes of the
string abbab are λ, a, ab, abb, abba, and abbab.

Now we give an important definition:

Definition 1. A language is a subset of Σ⋆, where Σ is an alphabet.

When we use the term language we always assume, implicitly or explicitly, that we are given
an alphabet. Here are some examples of languages: ∅, Σ⋆, {λ, a, aa, aaa, aaaa, aaaaa, . . .},
{ab, ba}, {w | aba is a substring of w}. We denote languages by capital letters U , V , W , L, etc.
We now define several operations on languages.

Given two languages U and V , their union is U ∪ V ; their intersection is U ∩ V ; and the
complement of U is Σ⋆ \ U . Below we discuss two additional operations on languages.

The concatenation operation. Let U and W be languages. The concatenation of U and
W is the language:

{u · w | u ∈ U, w ∈ W}.

We denote this language by U · W . For example, if U = {ab, ba} and W = {aa, bb} then
U ·W = {abaa, abbb, baaa, babb}. Here is another example. Let U = {a}. Then for any language
L, U · L = {au | u ∈ L}.

The star operation. This operation is also often called the Kleene’s star operator. Let U

be the language. Consider the following sequence of languages:

U0, U1, U2, U3, U4, . . .

where Un with n ∈ N is defined recursively as follows: U0 = {λ}, U1 = U, U2 = U · U , and
Un = Un−1 ·U . We can take the union of all these languages and denote the resulting language
by U⋆. Thus,

U⋆ = U0 ∪ U1 ∪ U2 ∪ U3 ∪

The language U⋆ is called the star of the language U . More informally, U⋆ is the set of
strings obtained by finite number of concatenations applied to strings from the language U . For
example, if U = {a} then U⋆ = {λ, a, aa, aaa, aaaa, . . .}. Note that the star of every language
contains λ. The language U⋆ is always an infinite language apart from the cases U = ∅ and
U = {λ}.

2 Deterministic finite automata

Let Σ be an alphabet and U be a language of Σ. A typical problem that we want to solve is the
following. Design an algorithm that, given a string w, determines whether or not w is in U .

Here is an example. Let U be the language consisting of all strings w over the alphabet {a, b}
such that w contains the substring aba. We want to design an algorithm that, given a string w,
determines whether or not w contains a substring aba. Here is the Find-aba(w) algorithm. Let
w be the string w = σ1 . . . σn.

1. Initialize variables i and state of integer type as i = 1 and state = 0
2. While i ≤ n do

(a) If state = 0 and σi = b then set state = 0.
(b) If state = 0 and σi = a then set state = 1.
(c) If state = 1 and σi = a then set state = 1.
(d) If state = 1 and σi = b then set state = 2.
(e) If state = 2 and σi = a then set state = 3.
(f) If state = 2 and σi = b then set state = 0.
(g) If state = 3 and σi ∈ {a, b} then state = 3.
(h) Increment i by one.

3. If state = 3 then output accept. Otherwise output reject.

The important factor in this algorithm is the values of the variable state. These values are
are 0, 1, 2, and 3. Call these the states of the program. The program makes its transitions from
one state to another depending on the input σi it reads. Thus, we have a transition function
associated with the program. The table of the transition function is presented in Table 1.

a b

0 1 0

1 1 2

2 3 0

3 3 3

Table 1. Transition function for the Find-aba(w)

The state 0 is the initial state of the algorithm. The state 3 is the accepting state as w

contains aba when state = 3. Finally, if the algorithm outputs reject then the state variable has
value 0, 1, or 2. Thus, we have given a finite state analysis of the Find-aba(w) algorithm. Now
we abstract from this example and give the following definition:

Definition 2. A deterministic finite automaton is a 5-tuple (S, q0, T, F, Σ), where

1. S is the set of states.

2. q0 is the initial state and q0 ∈ S.

3. T is the transition function T : S × Σ → S.

4. F is a subset of S called the set of accepting states.

5. Σ is an alphabet.

We abbreviate deterministic finite automaton as DFA. We often write (S, q0, TF) instead of

(S, q0, T, F, Σ). We use letters A, B, . . . to denote finite automata.

Thus, the state analysis of the Find-aba(w) algorithm above gives us the automaton (S, 0, T, F),
where: S = {0, 1, 2, 3}, 0 is the initial state, T is presented in Table 1 above, and F = {3}.

As for transition functions from the previous lecture, we can visualize finite automata as
labeled graphs. Let (S, q0, T, F) be a DFA. The states of the DFA are represented as vertices
of the graph. We put an edge from state s to state q if there is an input signal σ such that
T (s, σ) = q. The edges labeled with σ are called σ-transitions. The initial state is presented as
a vertex with an ingoing arrow without a source. The final states are vertices that are doubly
circled. We call this visual presentation a transition diagram of the automaton. For example,
the transition diagram of the automaton for the Find-aba(w) algorithm is given in Figure 1.

b
3

a

b

a

b

a

0 1 2

a b

Fig. 1. Transition diagram for a DFA for the Find-aba(w) algorithm

Another example of a DFA is presented in Figure 2.

a

b

a

a
b

a

b a

b

b

a

b

b

a

a

b

Fig. 2. An example of a transition diagram

Let M = (S, q0, T, F, Σ) be a DFA. Take any string w = σ1 . . . σn of the alphabet Σ. The
run of the automaton on this string is the sequence of states

s1, s2, . . . , sn, sn+1

such that T (si, σi) = si+1 for all i = 1, . . . , n and that s1 is the initial state. Thus, the run of M
on string w = σ1 . . . σn can be thought of as the execution the following algorithm Run(M, w):

1. Initialize s = q0 and i = 0.
2. Print s.
3. While i ≤ n do

(a) Set σ = σi.
(b) Set s = T (s, σ).
(c) Print s.
(d) Increment i

This algorithm outputs the states of the DFA M as it reads through the string w. First, the
algorithm prints the initial state. It then reads the first input σ1, makes a transition from
the initial state to state T (q0, σ1) and outputs T (q0, σ1) , reads the next symbol σ2, makes a
transition, and so on. Note that every run of M is a path starting from the initial state q0. One
can also visualize the run as a path labeled by the string w and starting with q0. For example,
the path 0, 0, 0, 1, 1, 2, 3, 3 is the run of the automaton in Figure 1 on the string bbaabab. On the
same input string the automaton on Figure 1 produces the run 0, 0, 0, 1, 4, 7, 5, 2.

Definition 3. Let M = (S, q0, T, F) be a DFA. We say that M accepts the string w = σ1 . . . σn

if the run of M

s1, . . . , sn, sn+1

on w is such that the last state sn+1 is in F . We call such a run an accepting run.

Note that the run of M on w is always unique. Therefore, the run is either accepting or
rejecting but not both. For example, the automaton in Figure 1 accepts those strings that
contain aba as a substring and rejects all other strings. The automaton in Figure 2 accepts all
the strings that have a in the third position from the last and rejects all other strings. Thus, we
now define the following important concept:

Definition 4. Let M = (S, q0, T, F, Σ) be a DFA. The language accepted by M, denoted

by L(M), is the following language:

{w | the automaton M accepts w}.

A language L ⊆ Σ⋆ is DFA recognizable if there exists a DFA M such that L = L(M).

Now we give several simple examples:

1. Consider a DFA with exactly one state. If the state is the accepting state then the automaton
accepts the language Σ⋆. Otherwise, if the state is not accepting, the automaton accepts
the empty language ∅.

2. Consider the language {w} consisting of one word w = σ1 . . . σn. This language is DFA
recognizable. The automaton recognizing this language just remembers the entire string.
Indeed, the following DFA (S, 0, T, F) recognizes the language:
(a) S = {0, 1, 2, 3, 4, . . . , n + 1}.
(b) 0 is the initial state.
(c) For all i ≤ n − 1, T (i, σi+1) = i + 1. In all other cases T (s, σ) = n + 1.
(d) The accepting state is n.
The transition diagram of this automaton when w = abbab is in Figure 3.

a

0 1 2 3 4 5

6

a b b a b

ba ab a b

Fig. 3. A DFA recognizing the language {abbab}.

3. The language L = {aw | w ∈ {a, b}⋆} is DFA recognizable. The transition diagram of a DFA
that recognizes the language is in Figure 4. Formally, here is the automaton M = (S, q0, T, F)
recognizing L:
(a) S = {0, 1, 2}
(b) The initial state is 0.
(c) The transition table is defined as follows: T (s, σ) = 1 for s = 0 and σ = a, T (s, σ) = 1

for s = 1 and σ ∈ {a, b}, and T (s, σ) = 2 in all other cases.
(d) 1 is the accepting state.

b

0 1

2

a

b
a

b

a

Fig. 4. A DFA recognizing the language {aw | w ∈ {a, b}⋆}.

3 Constructing finite automata

Suppose that we are given a language L and are asked to design a DFA that recognizes the
language L or argue that such a DFA does not exist. A very helpful idea for solving this type
of problem is to pretend that you are the machine and see how you would go about solving the
problem. We explain this in the following two examples.

Assume that we want to construct a DFA that recognizes the language

L = {w | w ∈ {ab}⋆ and w contains an odd number of a’s and an even number of b’s}.

Let’s pretend that we are the machine. We start reading from left to right the input string w,
and see symbols a or b. Do we need to remember the entire string we have seen so far in order
to tell whether we have passed through an odd number of a’s and an even number of b’s? Our
answer is “no” because of the following observation. We keep two coins both having two colored
sides blue and red. We associate the first coin with the symbol a and the second with the symbol
b. When we start, both coins are on their blue sides. Reading w, when we see a we flip the first
coin and when we see b we flip the second coin. Thus, if the first coin is on its blue side than
we have seen an even number of a’s, and if the coin is on its red side then we have seen an odd
number of a’s. The same holds true for the symbol b. Therefore, at at any given time, our state
is determined by the current colors of the coins. There are four possible states only:

1. The first coin is blue and the coin is blue. Code this state as 0.

2. The first coin is red and the coin is blue. Code this state as 1.
3. The first coin is blue and the coin is red. Code this state as 2.

4. The first coin is red and the coin is red. Code this state as 3.

When we finish reading the whole input string w we accept the string if the first coin is on its
red side and the second coin is in its blue side. In all other cases we reject the string. Thus, all
this reasoning helps us to build a DFA that recognizes L. The Figure 5 is the transition diagram
of the automaton we have built.

a2 3

1

0 b

a

b

a b

b

a

Fig. 5. A DFA recognizing the language {w | w has an odd number of a’s and an even number of b’s}.

Consider the following language L = {anbn | n ∈ N}. Let’s pretend to be a machine that
recognizes L. Given an input string w, we have the following constraints as dictated by the
definition of run of DFA. We must read the string w from left to right. We are not allowed to
come back to any position in w which we have passed. Assume w starts with b. We then reject w.
Assume that w starts with an a. We read a and remember that we have read one a. Informally,
this tells us that we have to create a state, let’s denote it by s1, that remembers that w starts
with an a. If b is the next and the last symbol then we accept w. Otherwise, we reject w. If the
second symbol is a, then we remember that we have read two a’s. Informally, this tells us that
we have to create a state, let’s denote it by s2, that remembers that w starts with aa. We must
keep s1 and s2 separate. Indeed, if we declare s1 = s2 then we have to accept the string aab

which is clearly not desirable. Lets continue this on. Assume that w is of the form anu, where
n ≥ 1, and we have created states s1, s2, . . ., sn. State si detects that the input string starts
with ai. Consider the first symbol of u. If it is a b then we can use our states sn, sn−1, . . ., s1 and
control the next n symbols of w. If all the symbols of u are b and there are exactly n of them, we
accept w and otherwise reject. However, if the first symbol of u is a, then we need to remember
that we have read exactly n + 1 symbols of a. This tells us that we have to create a state, let’s
denote it by sn+1, that remembers that w starts with an+1. We must keep sn+1 separate from
all the states s1, s2, . . ., sn we have built so far. Thus, we see that in order to recognize L, our
informal analysis tells us that we need to have infinitely many states. This intuitive reasoning
based on pretending to be a machine for recognizing L gives us a reason to believe that no DFA
recognizes L. Indeed, our intuition here is correct as will be shown in Lecture 13.

Constructing automata for the union operation. Here is a design problem we want

to solve. Assume we are given two DFA M1 = (S1, q
(1)
0 , T1, F1) and M2 = (S2, q

(2)
0 , T2, F2).

These two DFA recognize languages L1 = L(M1) and L2 = L(M2). We want to design a DFA
M = (S, q0, T, F) that recognizes the union L1 ∪ L2.

We use the method of pretending to be a machine that recognizes L1∪L2. The first attempt
for building the desired M is this. For an input string w, we simulate the first machine M1. If
M1 accepts w then w ∈ L1 ∪ L2. If M1 rejects w then we run the second machine M2 on w.
If M2 accepts w then w ∈ L1 ∪ L2. Otherwise, we reject w. The problem with this idea is that
we can not read the input w twice. If we are not allowed to run M1 and M2 on w turn by turn
then why don’t we run M1 and M2 on w in parallel?

We take the following approach. On input string w, we run M1 and M2 simultaneously as

follows. Initially, we remember the initial states q
(1)
0 and q

(2)
0 . We read the first input symbol σ1

of w, make simultaneous transitions on M1 and M2, and remember the states s
(1)
1 = T1(q

(1)
0 , σ1)

and s
(2)
1 = T2(q

(2)
0 , σ1). We then repeat this process by making simultaneous transitions from

s
(1)
1 to s

(1)
2 = T1(s

(1)
1 , σ2) on M1, and from s

(2)
1 to s

(2)
2 = T2(s

(2)
1 , σ2) on M2, where σ2 is the

second letter of w. We continue this on. Once we finish the simultaneous runs of M1 and M2 on
w, we look at the resulting end states of these two runs. If one of these states is accepting then
we accept w and otherwise we reject w. Thus, at any given stage of the two runs we remember
a pair (p, q), where p ∈ S1 and q ∈ S2. Our transition on this pair on input σ is simply the
simultaneous transitions from p to T1(p, σ) of M1 and from q to T2(q, σ) of M2. We can be in
at most |S1| · |S2| states.

Now we formally define the DFA M = (S, q0, T, F) that recognizes the language L1 ∪ L2:

1. The set S of states is S1 × S2.
2. The initial state is the pair (q

(1)
0 , q

(2)
0).

3. The transition function T is the product of the transition functions T1 and T2, that is:

T ((p, q), σ) = (T1(p, σ), T2(q, σ)),

where p ∈ S1, q ∈ S2, and σ ∈ Σ.
4. The set F of final states consists of all pairs (p, q) such that either p ∈ F1 or q ∈ F2.

The proof that M is a DFA recognizing the union L1∪L2 is informally explained as follows.
We first show that, nn the one hand, if w is in L1∪L2 then the automaton M accepts w. Indeed,
if w ∈ L1 ∪ L2 then either M1 accepts w or M2 accepts w. In either case, since M simulates
both M1 and M2, the string w must be accepted by M. On the other hand, if w is accepted
by M then the run of M on w can be split into two runs: one is the run of M1 on w and the
other is the run of M2 on w. Since M accepts w, it must be the case that one of the runs is
accepting.

The notation for the automaton built is this: M1 ⊕M2.

Constructing automata for the intersection operation. Assume we are given two

DFA M1 = (S1, q
(1)
0 , T1, F1) and M2 = (S2, q

(2)
0 , T2, F2). These two DFA recognize languages

L1 = L(M1) and L2 = L(M2). We want to design a DFA M = (S, q0, T, F) that recognizes the
intersection L1 ∩ L2.

We use the idea of constructing the DFA for the union of languages. Given an input w, we
run M1 and M2 on w simultaneously as we explained for the union operation. Once we finish
the runs of M1 and of M2 on w, we look at the resulting end states of these two runs. If both
end states are accepting then we accept w and otherwise we reject w. Formally, we define the
DFA M = (S, q0, T, F) that recognizes the language L1 ∩ L2 as follows:

1. The set S of states is S1 × S2.
2. The initial state is the pair (q

(1)
0 , q

(2)
0).

3. The transition function T is the product of the transition functions T1 and T2, that is:

T ((p, q), σ) = (T1(p, σ), T2(q, σ)),

where p ∈ S1, q ∈ S2, and σ ∈ Σ.
4. The set F of final states consists of all pairs (p, q) such that p ∈ F1 and q ∈ F2.

It is not difficult to prove that M constructed recognizes L1 ∩ L2.

The notation for the automaton built is this: M1 ⊗M2.

Constructing automata for the complementation operation. Given a DFA M =
(S, q0, T, F) we want to design a DFA that recognizes the complement of L(M). This is indeed a
very simple problem as for this we just keep the same states, the initial state, and the transition

function T . The only change we make is that we swap the accepting states with the non-accepting
states. Thus, the automaton that recognizes the language Σ⋆ \L(M) is M(c) = (S, q0, T, S \F).
The most important part in this construction is the following observation. On every input w,
the DFA M (and hence M(c)) has a unique run. Therefore, M accepts w if and only if M(c)

rejects w.

4 Minimization algorithm

Suppose that we are given a DFA A. The number of states of A measures the complexity of A. If
A has many states then this could be due to two reasons. One is that the language recognized by
A can be complex. Therefore there could be no way to reduce the number of states of A without
changing the language recognized. The second is that A could be implemented inefficiently and
therefore can have many redundant states. In this case we would like to remove those redundant
states and make the automaton A smaller. To make all these things more precise we give the
following definition:

Definition 5. We say that a DFA A is equivalent to a DFA B if L(A) = L(B).

Thus, if A and B are equivalent DFA, then for any string w, A accepts w if and only if B
accepts w. Consider the two automata, A1 and A2, in Figure 6: A1 is the automaton with three
states and A2 with two states. Both A1 and A2 are equivalent and recognize the language

L = {w | w ∈ {a, b}⋆ and each b in w is followed by an a later on after the b}.

There does not exist a one state automaton recognizing L. Therefore the two state automaton
A2 has the fewest possible states recognizing L.

a

b
a

b

b

a

b

aa

b

Fig. 6. Two equivalent automata

Our goal is now to provide a method that reduces the redundant states from a given au-
tomaton. We give the following definition.

Definition 6. We say that a DFA A is minimal if no DFA B equivalent to A has fewer states

than A itself.

For example, the two state automaton A2 in Figure 6 is minimal. Note that, by dfeinition,
for every DFA A there exists a minimal automaton equivalent to A.

Let A = (S, q0, T, F) be a DFA. Take a state s ∈ S and a string w. Starting at state s, run
the automaton on string w. We denote the last state of this run by T (s, w). Formally, the state
T (s, w) is defined inductively as follows: T (s, λ) = s, T (s, wσ) = T (T (s, w), σ), where w ∈ Σ⋆.
We now give the following important definition that is used in constructing minimal automata.

Definition 7. Let p and q be two states of the DFA A. We say that p and q are indistinguish-

able if for all strings w ∈ Σ⋆, T (p, w) ∈ F if and only if T (q, w) ∈ F . Otherwise, we say that

the states p and q are distinguishable

For example, consider the automaton A1 with three states in Figure 6. The two final states
are indistinguishable.

If states p and q are distinguishable then this is equivalent to saying the following. There
exists a string w such that either T (p, w) ∈ F and T (q, w) 6∈ F or T (p, w) 6∈ F and T (q, w) ∈ F .
We call any string w that satisfies one of these two properties a witness that distinguishes p

and q. As an example, any accepting state p is distinguishable from a non-accepting state q.
The string λ is a witness that distinguishes p and q because T (p, λ) ∈ F and T (q, λ) 6∈ F .

Here is now the problem we would like to solve. Design an algorithm, that given a DFA
A = (S, q0, T, F, Σ), produces a minimal DFA equivalent to A. In order to solve this problem,
let’s analyze the DFA A presented in Figure 7.

8

b

ab

b
b

b

a

a

a

a

b

b

b

a

a

b

a

0

3

1

7

54

2

a

6

Fig. 7. A DFA for minimiaztion

The automaton A has 9 states. We want to reduce the number of states of this automaton
and build a smaller automaton equivalent to it. First of all, we remove all the states that are

not reachable from the initial state. There is only one such state which is 8. So we take the state
8 out and the resulting automaton is still equivalent to the given one. From now on we assume
that state 8 does not exist. Secondly, the idea is this. For each state i we want to collapse all
states j indistinguishable from i into one state denoted by [i]. Thus, the state [i] is the set {j | j

is indistinguishable from i}. Clearly, every state i belongs to [i]. Therefore [i] 6= ∅. This idea is
implemented as follows. We form a 8×8 table whose rows and columns are named by the states.
The cell (i, j) in the table represents the cell on row i and column j. Initially we have the Table
2.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Table 2.

Our goal is to put X ’s into those cells (i, j) such that states i and j are distinguishable. We
know that if one of the states i, j is accepting and the other is not then i and j are distinguishable.
Thus, we put X into all cells (i, j) such that either i or j is in F but not both. This produces
Table 3.

0 1 2 3 4 5 6 7

0 X X

1 X X

2 X X X X X X

3 X X

4 X X

5 X X

6 X X X X X X

7 X X

Table 3.

We process Table 3 as follows. Take any cell (p, q) that is not marked with an X . Put an X

into cell (p, q) if there is a symbol σ ∈ {a, b} such that the cell (r, s) is marked with an X , where
r = T (p, σ) and s = T (q, σ). This process produces Table 4.

We then process Table 4 as follows in the same way as processed the previous table. Namely,
take any cell (p, q) without an X . Put an X into the cell (p, q) if there is a symbol σ ∈ {a, b}
such that the cell (r, s) is marked with an X , where r = T (p, σ) and s = T (q, σ). This process
produces Table 5. Finally, we process Table 5 in the same way as above, and produce the final
Table 6. We stop when there exists no cell such that the cell is without an X and can still get
an X with the method described.

0 1 2 3 4 5 6 7

0 X X X X X

1 X X X X X

2 X X X X X X

3 X X X X X

4 X X X X X X X

5 X X X X X

6 X X X X

7 X X X X X X

Table 4.

0 1 2 3 4 5 6 7

0 X X X X X X

1 X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X X

5 X X X X X X X

6 X X X X X

7 X X X X X X

Table 5.

Consider the final Table 6. Take any state i of the automaton, go through the ith row of the
table, collapse all the states j such that the cell (i, j) is not marked with an X into one state
denoted by [i]. Thus, we have [0] = {0, 3}, [1] = {1, 7}, [2] = {2, 6}, [4] = {4}, and [5] = {5}.
Thus we have built a new automaton Anew with states [0], [1], [2], [4], and [5] presented in
Figure below.

Keeping the above example in mind, we now present the minimization algorithm and prove
its correctness. Let A = (S, q0, T, F) be a DFA. Here is the Minimization(A) algorithm:

0 1 2 3 4 5 6 7

0 X X X X X X

1 X X X X X X

2 X X X X X X

3 X X X X X X

4 X X X X X X X

5 X X X X X X X

6 X X X X X X

7 X X X X X X

Table 6.

b

a

b

b

a

a

a

a

b

b

[2][0] [1]

[5][4]

Fig. 8. The DFA Anew

1. Remove states that are not reachable from the initial state of A. (Comment: From now on
we assume that all the states of A are reachable from the initial state).

2. Let 0, 1, . . ., n − 1 be all the states of A, where 0 is the initial state. Make an n × n table
whose rows and columns are labeled with states.

3. Initialize the table by marking with an X all the cells (i, j) such that one of the states i, j

is an accepting state and the other is not.
4. Repeat the following until no cell (i, j) can be marked with an X :

(a) Mark a cell (p, q) with an X if (p, q) does not have a mark, and there is a σ ∈ Σ such
that the cell (T (p, σ), T (q, σ) has a mark.

5. For each state i define [i] to be the set {j | the cell (i, j) is not marked}, where i = 0, . . . , n−1.
6. Construct the following new DFA:

(a) Declare each [i] to be a state of the new DFA.
(b) The initial state is [0].
(c) Put transitions from all [i] to [T (i, σ)] and label the transition by σ.

(d) Declare [i] to be an accepting state if i is an accepting state.

The first step of the algorithm produces the automaton that is equivalent to the given one.
Note that Step 6 of the algorithm defines states, the initial state, transition, and accepting states
of the new automaton. Our goal is to show that the new automaton is correctly defined and is
minimal. To do this we now analyze the algorithm. There are n2 cells in the initial table defined
at Step 2, the number of marked cells in the table increases with each iteration in Step 4, and
hence the algorithm must terminate.

Fact 1If a cell (p, q) is marked with an X then p and q are distinguishable.

If (p, q) is marked at Step 2 of the algorithm then p and q are clearly distinguishable.
The witness that distinguishes these states is λ. Consider the loop of the algorithm in Step 4.
Assume (p, q) is marked with an X because there exists a σ ∈ Σ such that (T (p, σ), T (q, σ))
has already been marked. By inductive assumption the states p′ = T (p, σ) and q′ = T (q, σ) are
distinguishable. Let w be the string distinguishing p′ and q′. Then σw distinguishes p and q.
Indeed, in this case we have T (p, σw) = T (T (p, σ), w) = T (p′, w) and T (q, σw) = T (T (q, σ), w) =
T (q′, w). This explains the fact.

Fact 2.If a cell (p, q) does not have an X then p and q are indistinguishable.

Assume a string w = σ1 . . . σk distinguishes p and q. Consider the following two sequences

p0 = p, p1 = T (p0, σ1), p2 = T (p1, σ2), . . . , pn = T (pn−1, σn)

and

q0 = q, q1 = T (q0, σ1), q2 = T (q1, σ2), . . . , qn = T (qn−1, σn).

The pair (pn, qn) gets an X by Step 2 of the algorithm since w distinguishes p and q. Therefore
the pair (pn1

, qn−1) must get a mark. Continue this on we see that the pair (p0, q0) also gets a
mark X . This contradicts the assumption of the lemma. This explains the fact.

For each state i ∈ S, the algorithm considers the set [i] = {j | the cell (i, j) is not marked}
and declares [i] to be a state of the new DFA. These states satisfy the following properties (the
reader, check all these properties!):

Property 1. Every state i of the original automaton is in [i].
Property 2. For any two states [i] and [j] either [i] = [j] or [i] ∩ [j] = ∅.
Property 3. If i and j are indistinguishable then T (i, σ) and T (j, σ) are also indistinguishable.

In the Minimization(A) algorithm Step 5 constructs the deterministic finite automaton
Anew = (Snew , qnew, Tnew, Fnew) as follows:

1. The set Snew consists of all the states [i].

2. The initial state qnew is [0].

3. Tneq([i], σ) = [T (i, σ)] for all [i] ∈ Snew and σ ∈ Σ.

4. Fnew = {[i] | i ∈ F}.

By properties 1 and 2, above the number of states in A is not smaller than the number of states
in Snew. Property 3 above tells us that this definition of Tnew is correct. In other words, Tnew

is a function from Snew × Σ to Snew .

Fact 3The DFA automata Anew and A are equivalent.

The proof of this fact follows from how we defined Anew and the previous facts. Indeed,
assume that w is accepted by A. This means that T (0, w) ∈ F . By the definition of Tnew we then
must have Tnew([0], w) = [T (0, w)]. Since T (0, w) ∈ F it must be the case that [T (0, w)] ∈ Fnew .
Thus, w is accepted by Anew. Now assume that Anew accepts w. Then Tnew([0], w) ∈ Fnew

which means [T (0, w)] ∈ Fnew . Therefore, T (0, w) ∈ F and hence A accepts w.

Now we want to show that the DFA Anew is a minimal DFA equivalent to the given DFA
A. For this we need to show that any minimal DFA equivalent to A does not have fewer states
than Anew. Thus, let A′ = (S′, q′0, T

′, F ′) be a minimal automaton equivalent to A. We want to
show that Anew and A′ have the same number of states. We reason recursively that defines a
function f from states of A′ into the states of Anew.

Basis: In this case we map q′0 to [0]. Thus we have a partial function f : S′ → Snew such
that no two states in S′ are mapped into the same state in Snew.

Inductive step. Our hypothesis is the following. We have built a partial function f : S′ →
Snew such that no two states in S′ are mapped into the same state in Snew. Moreover, for any
s′ ∈ Domain(f) the following property is satisfied. The states s and f(s) are indistinguishable
in the sense that for all w ∈ Σ⋆, T (s′, w) ∈ F ′ if and only if Tnew(f(s), w) ∈ Fnew. Assume that
f is not total.

Take a p′ ∈ Domain(f) and σ ∈ Σ such that T (p′, σ) = q′ and q′ 6∈ Domain(f). Such p′

and σ must exist as f is not total. Define the value of f on q′ as follows. Declare the value of
f on q′ to be Tnew(f(p′), σ). This value Tnew(f(p′), σ) of f can not be equal to any other value
s ∈ Snew from the range of f defined in the previous steps of the construction of f . Otherwise,
s and Tnew(f(p′), σ) would be indistinguishable.

Continuing this construction of f , when the construction terminates we have a total bijective
function from S′ to Snew . This shows that Anew has the same number of states as the minimal
the minimal automaton A′. Thus, we have proved the algorithm Minimization(A) is correct.
In other words, given a DFA A the algorithm produces a minimal DFA equivalent to A.

