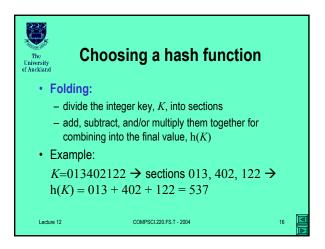
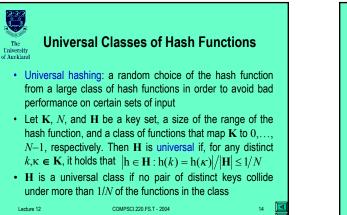
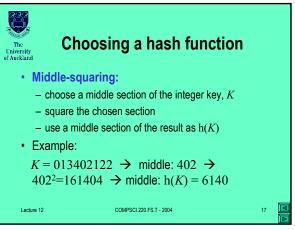
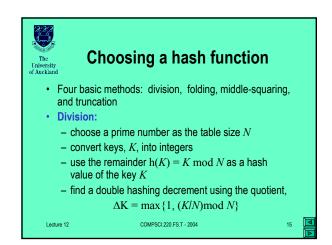
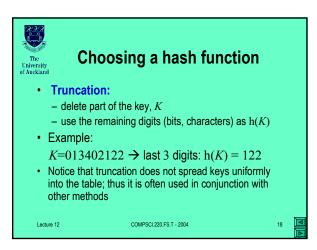

The University of Auckland	Open Addressing rith Double Hashing (OADH)	
 Better co of cluster 	Ilision resolution policy reducing the likelihood ring:	
	sh the collided key again using a different hash on and	
incren	e the result of the second hashing as an nent for probing table locations (including around)	
Lecture 12	COMPSCI.220.FS.T - 2004 10	M

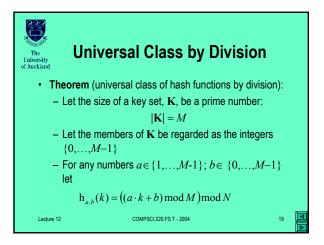


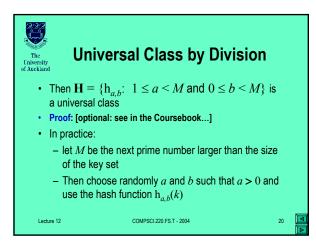


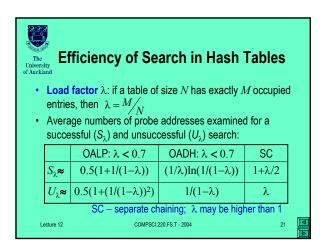












The University of Auckland	Effi	ciency o	of Searc	h: S_{λ}	
	$ \begin{array}{c} \lambda \\ (N = 997) \end{array} $	SC; 3 trials	OALP; 50 trials	OADH; 50 trials	
	0.10	1.05/1.04	1.06/1.05	1.05/1.05	
	0.25	1.12/1.12	1.17/1.16	1.15/1.15	
	0.50	1.25/1.25	1.50/1.46	1.39/1.37	
	0.75	1.37/1.37	2.50/2.42	1.85/1.85	
	0.90	1.45/1.44	5.50/4.94	2.56/2.63	
	0.99	1.49/1.49	50.5/16.4	4.65/4.79	
	Theoretical	/ average mea	asured experin	nental results	
Lecture	12	COMPSCI.220.	FS.T - 2004		22

The University of Auckland	Effi	ciency c	of Search	: U_{λ}
	$ \begin{array}{c} \lambda \\ (N = 997) \end{array} $	SC; 3 trials	OALP; 50 trials	OADH; 50 trials
	0.10	0.10/0.10	1.12/1.11	1.11/1.11
	0.25	0.25/0.21	1.39/1.37	1.33/1.33
	0.50	0.50/0.47	2.50/2.38	2.00/2.01
	0.75	0.75/0.80	8.50/8.36	4.00/4.10
	0.90	0.90/0.93	50.5/39.1	10.0/10.9
	0.99	0.99/0.97	5000/360.9	100.0/98.5
	Theoretical	/ average mea	asured experim	ental results
Lecture	12	COMPSCI.220.	FS.T - 2004	23

Table ADT Representations: Thereity of Auckland Comparative Performance						
Operation	Representation					
	Sorted array	AVL tree	Hash table			
Initialize	O(<i>N</i>)	O(1)	O(<i>N</i>)			
Is full?	O(1)	O(1)	O(1)			
Search*)	$O(\log N)$	$O(\log N)$	O(1)			
Insert	O(<i>N</i>)	$O(\log N)$	O(1)			
Delete	O(N)	$O(\log N)$	O(1)			
Enumerate	O(N)	O(N)	$O(N \log N)^{**)}$			
*) also: Retrie first be sorted	ve, Update **)T in ascending orde	o enumerate a ha or of keys that take	sh table, entries must as $O(N \log N)$ time			
Lecture 12	COMPS	SCI.220.FS.T - 2004	24			