
Introduction to Algorithm Analysis March 26, 2004

COMPSCI.220.FS.T - 2004 - Lecture 12 1

Lecture 12 COMPSCI.220.FS.T - 2004 1

Symbol Table and Hashing
• A (symbol) table is a set of table entries, (K,V)
• Each entry contains:

– a unique key, K, and
– a value (information), V

• Each key uniquely identifies its entry
• Table searching:

– Given: a search key, K
– Find: the table entry, (K,V)

Lecture 12 COMPSCI.220.FS.T - 2004 2

Symbol Table and Hashing
• Once the entry (K,V) is found, its value V, may be

updated, it may be retrieved, or the entire entry, (K,V) ,
may be removed from the table

• If no entry with key K exists in the table, a new table
entry having K as its key may be inserted in the table

• Hashing is a technique of storing values in the tables
and searching for them in linear, O(n), worst-case and
extremely fast, O(1), average-case time

Lecture 12 COMPSCI.220.FS.T - 2004 3

Basic Features of Hashing
• Hashing computes an integer, called the hash code, for

each object
• The computation, called the hash function, h(K), maps

objects (e.g., keys K) to the array indices (e.g., 0, 1,
…, imax)

• An object having a key value K should be stored at
location h(K), and the hash function must always
return a valid index for the array

Lecture 12 COMPSCI.220.FS.T - 2004 4

Basic Features of Hashing
• A perfect hash function produces a different index value

for every key. But such a function cannot be always
found.

• Collision: if two distinct keys, K1 ≠ K2, map to the
same table address, h(K1) = h(K2)

• Collision resolution policy: how to find additional
storage in which to store one of the collided table
entries

Lecture 12 COMPSCI.220.FS.T - 2004 5

How Common Are Collisions?

• Von Mises Birthday Paradox:
if there are more than 23 people in a room, the

chance is greater than 50% that two or more of them
will have the same birthday

• Thus, in the table that is only 6.3% full (since 23/365 =
0.063) there is better than 50−50 chance of a collision!

Lecture 12 COMPSCI.220.FS.T - 2004 6

How Common Are Collisions?

• Probability QN(n) of no collision (that is, that none
of the n items collides, being randomly tossed into a
table with N slots):

nNN

NN

NNN

N
nNNN

N
nNnn

N
NNN

N
N

N
NN

N
N

N
N

)1)...(1(1)1(Q)(Q

... ;)2)(1(2)2(Q)3(Q

;)1(1)1(Q)2(Q ;1)1(Q

3

2

+−−
≡

+−
−=

−−
≡

−
=

−
≡

−
=≡=

Introduction to Algorithm Analysis March 26, 2004

COMPSCI.220.FS.T - 2004 - Lecture 12 2

Lecture 12 COMPSCI.220.FS.T - 2004 7

Probability PN(n)
of One or More Collisions

)!(
!1)(Q1)(P

nNN
Nnn nNN −

−=−=

16.4

13.7
11.0
8.2
5.5
2.7
%

0.994160

0.970450
0.891240
0.706330
0.411420
0.116910
P365(n)n

Lecture 12 COMPSCI.220.FS.T - 2004 8

Open Addressing
with Linear Probing (OALP)

• The simplest collision resolution policy:
– to successively search for the first empty entry at a

lower location
– if no such entry, then ``wrap around'' the table

• Drawbacks: clustering of keys in the table

Lecture 12 COMPSCI.220.FS.T - 2004 9

OALP
example:
n = 5..7
N = 10

Lecture 12 COMPSCI.220.FS.T - 2004 10

Open Addressing
with Double Hashing (OADH)

• Better collision resolution policy reducing the likelihood
of clustering:
– to hash the collided key again using a different hash

function and
– to use the result of the second hashing as an

increment for probing table locations (including
wraparound)

Lecture 12 COMPSCI.220.FS.T - 2004 11

OADH
example:
n = 5..7
N = 10

Lecture 12 COMPSCI.220.FS.T - 2004 12

Two More Collision Resolution
Techniques

• Open addressing has a problem when significant
number of items need to be deleted as logically deleted
items must remain in the table until the table can be
reorganised

• Two techniques to attenuate this drawback:
– Chaining
– Hash bucket

Introduction to Algorithm Analysis March 26, 2004

COMPSCI.220.FS.T - 2004 - Lecture 12 3

Lecture 12 COMPSCI.220.FS.T - 2004 13

Chaining and Hash Bucket
• Chaining: all keys collided at a single hash address are

placed on a linked list, or chain, started at that address
• Hash bucket: a big hash table is divided into a number

of small sub-tables, or buckets
– the hush function maps a key into one of the buckets
– the keys are stored in each bucket sequentially in

increasing order

Lecture 12 COMPSCI.220.FS.T - 2004 14

Universal Classes of Hash Functions

• Universal hashing: a random choice of the hash function
from a large class of hash functions in order to avoid bad
performance on certain sets of input

• Let K, N, and H be a key set, a size of the range of the
hash function, and a class of functions that map K to 0,…,
N−1, respectively. Then H is universal if, for any distinct
k,κ ∈ K, it holds that

• H is a universal class if no pair of distinct keys collide
under more than 1/N of the functions in the class

Nk 1)h()h(:h ≤=∈ HH κ

Lecture 12 COMPSCI.220.FS.T - 2004 15

Choosing a hash function
• Four basic methods: division, folding, middle-squaring,

and truncation
• Division:

– choose a prime number as the table size N
– convert keys, K, into integers
– use the remainder h(K) = K mod N as a hash

value of the key K
– find a double hashing decrement using the quotient,

∆K = max{1, (K/N)mod N}

Lecture 12 COMPSCI.220.FS.T - 2004 16

Choosing a hash function

• Folding:
– divide the integer key, K, into sections
– add, subtract, and/or multiply them together for

combining into the final value, h(K)
• Example:

K=013402122 sections 013, 402, 122
h(K) = 013 + 402 + 122 = 537

Lecture 12 COMPSCI.220.FS.T - 2004 17

Choosing a hash function

• Middle-squaring:
– choose a middle section of the integer key, K
– square the chosen section
– use a middle section of the result as h(K)

• Example:
K = 013402122 middle: 402
4022=161404 middle: h(K) = 6140

Lecture 12 COMPSCI.220.FS.T - 2004 18

Choosing a hash function
• Truncation:

– delete part of the key, K
– use the remaining digits (bits, characters) as h(K)

• Example:
K=013402122 last 3 digits: h(K) = 122

• Notice that truncation does not spread keys uniformly
into the table; thus it is often used in conjunction with
other methods

Introduction to Algorithm Analysis March 26, 2004

COMPSCI.220.FS.T - 2004 - Lecture 12 4

Lecture 12 COMPSCI.220.FS.T - 2004 19

Universal Class by Division
• Theorem (universal class of hash functions by division):

– Let the size of a key set, K, be a prime number:
|K| = M

– Let the members of K be regarded as the integers
{0,…,M−1}

– For any numbers a∈{1,…,M-1}; b∈ {0,…,M−1}
let

() NMbkakba modmod)()(h , +⋅=

Lecture 12 COMPSCI.220.FS.T - 2004 20

Universal Class by Division

• Then H = {ha,b: 1 ≤ a < M and 0 ≤ b < M} is
a universal class

• Proof: [optional: see in the Coursebook…]
• In practice:

– let M be the next prime number larger than the size
of the key set

– Then choose randomly a and b such that a > 0 and
use the hash function ha,b(k)

Lecture 12 COMPSCI.220.FS.T - 2004 21

Efficiency of Search in Hash Tables

• Load factor λ: if a table of size N has exactly M occupied
entries, then

• Average numbers of probe addresses examined for a
successful (Sλ) and unsuccessful (Uλ) search:

λ1/(1−λ)0.5(1+(1/(1−λ))2)Uλ≈

1+λ/2(1/λ)ln(1/(1−λ))0.5(1+1/(1−λ))Sλ≈
SCOADH: λ < 0.7OALP: λ < 0.7

SC − separate chaining; λ may be higher than 1

N
M=λ

Lecture 12 COMPSCI.220.FS.T - 2004 22

Efficiency of Search: Sλ

4.65/4.7950.5/16.41.49/1.490.99
2.56/2.635.50/4.941.45/1.440.90
1.85/1.852.50/2.421.37/1.370.75
1.39/1.371.50/1.461.25/1.250.50
1.15/1.151.17/1.161.12/1.120.25
1.05/1.051.06/1.051.05/1.040.10

OADH;
50 trials

OALP;
50 trials

SC;
3 trials

λ
(N = 997)

Theoretical / average measured experimental results

Lecture 12 COMPSCI.220.FS.T - 2004 23

Efficiency of Search: Uλ

100.0/98.55000/360.90.99/0.970.99
10.0/10.950.5/39.10.90/0.930.90
4.00/4.108.50/8.360.75/0.800.75
2.00/2.012.50/2.380.50/0.470.50
1.33/1.331.39/1.370.25/0.210.25
1.11/1.111.12/1.110.10/0.100.10

OADH;
50 trials

OALP;
50 trials

SC;
3 trials

λ
(N = 997)

Theoretical / average measured experimental results

Lecture 12 COMPSCI.220.FS.T - 2004 24

Table ADT Representations:
Comparative Performance

O(N log N)**)O(N) O(N) Enumerate
O(1)O(log N) O(N) Delete

O(log N)
O(log N)

O(1)
O(1)

AVL tree

O(1) O(N) Insert
O(1)O(log N) Search*)

O(1) O(1) Is full?
O(N) O(N) Initialize

Hash tableSorted array
RepresentationOperation

*) also: Retrieve, Update **)To enumerate a hash table, entries must
first be sorted in ascending order of keys that takes O(N log N) time

