
Introduction to Algorithm Analysis March 25, 2004

COMPSCI.220.FS.T - 2004 - Lecture 11 1

Lecture 11 COMPSCI.220.FS.T - 2004 1

Balancing an AVLTree
• Two mirror-symmetric pairs of cases to rebalance the

tree if after the insertion of a new key to the bottom the
AVL property is invalidated

• Only one single or double rotation is sufficient
• Deletions are more complicated: O(log n) rotations

can be required to restore the balance
• AVL balancing is not computationally efficient . Better

balanced search trees: red-black, AA-trees, B-trees

Lecture 11 COMPSCI.220.FS.T - 2004 2

Single Rotation
• The inserted new key invalidates the AVL property
• To restore the AVL tree, the root is moved to the node

B and the rest of the tree is reorganised as the BST

Lecture 11 COMPSCI.220.FS.T - 2004 3

Double Rotation
• Balancing by more complex alternative representation

of the tree (split of the ST2 and move of the root to D)

Lecture 11 COMPSCI.220.FS.T - 2004 4

Red-Black Tree
• A red-black tree is a binary search tree with the

following ordering properties:
– Every node is coloured either red or black
– The root is black
– In a node is red, its children must be black
– Every path from a node to a leaf must contain the

same number of black nodes
• Statement: because every path from the root to a leaf

contains b black nodes, there are at least 2b black
nodes in the tree

Lecture 11 COMPSCI.220.FS.T - 2004 5

Red-Black Tree
• Proof of the statement by math induction:

it is valid for b=1 (only the root or also1-2 its children)
• Let it be valid for all red-black trees with b black nodes

per path
• If a tree contains b+1 black nodes per path and it has 2

black children of the root, then it contains at least
2⋅(2b−1)+1 = 2b+1−1 black nodes

Lecture 11 COMPSCI.220.FS.T - 2004 6

Red-Black Tree
• If there is a red child of the root, it has necessarily only

black children, and the total number of the black nodes is
even larger

• There cannot be two consecutive red nodes on a path, so
the height of a red-black tree is at most 2log2(n+1)

• Thus the search operation is logarithmic O(log n)

Introduction to Algorithm Analysis March 25, 2004

COMPSCI.220.FS.T - 2004 - Lecture 11 2

Lecture 11 COMPSCI.220.FS.T - 2004 7

Red-Black Tree

Average case: a search in a red-black tree with n nodes built
from random keys seems to require about log n
comparisons and an insertion seems to require, on the
average, less than one rotation

Worst case: a search in a red-black tree with n nodes built from
random keys requires less than 2log n + 2 comparisons,
and an insertion requires fewer than one-quarter as many
rotations as comparisons

Lecture 11 COMPSCI.220.FS.T - 2004 8

AA-Trees
• Software implementation of the operations insert and

remove for red-black trees is a rather tricky process
• A balanced search AA-tree is a method of choice if

deletions are needed
• The AA-tree adds one extra condition to the red-black

tree: left children may not be red
• This condition greatly simplifies the red-black tree

remove operation

Lecture 11 COMPSCI.220.FS.T - 2004 9

B-Trees: Efficient External Search

• For very big databases, even log2n search steps may
be unacceptable

• To reduce the number of disk accesses: an optimal m-
ary search tree of height about logmn

33322log1000n
54433log100n
98765log10n

3027242017log2n
109108107106105n

m-way branching
lowers the optimal
tree height by factor
log2 m (i.e., by 3.3 if
m=10)

Lecture 11 COMPSCI.220.FS.T - 2004 10

Multiway Search Tree of Order m = 4

• In an m-ary search tree, at most m−1 keys are used to
decide which branch to take

• The data records are associated only with leaves, so
the worst-case and average-case searches involve the
tree height and the average leaf depth, respectively

Lecture 11 COMPSCI.220.FS.T - 2004 11

B-Tree Definition

• A B-tree of order m is defined as an m-ary balanced
tree with the following properties:
– The root is either a leaf or it has between 2 and m

children inclusive
– Every nonleaf node (except possibly the root) has

between m/2 and m children inclusive

Lecture 11 COMPSCI.220.FS.T - 2004 12

B-Tree Definition
• A nonleaf node with µ children has µ−1 keys (keyi :

i=1, …, µ−1) to guide the search
• keyi represents the smallest key in the subtree i+1
• All leaves are at the same depth
• The data items are stored at leaves, and every leaf

contains between l/2 and l data items, for some l that
may be chosen independently of the tree order m

• Assuming that each node represents a disk block, the
choice is based on the size of items that are being stored

Introduction to Algorithm Analysis March 25, 2004

COMPSCI.220.FS.T - 2004 - Lecture 11 3

Lecture 11 COMPSCI.220.FS.T - 2004 13

Example of choosing m, l
• Let one data block hold 8192 bytes and each key use

32 bytes
• Let there be 107 data records, 256 bytes per record
• B-tree of order m: m−1 keys per node plus m branches
• The branch is a number of another disk block, so let a

branch be 4 bytes:
32(m−1)+4m = 36m−32 < 8192 m=228

• Because the block size is 8192 bytes, l = 32 records of
size 256 bytes fit in a single block

Lecture 11 COMPSCI.220.FS.T - 2004 14

Example of choosing m, l

• Each leaf has between 16..32 data records inclusive,
and each internal node, except from the root, branches
in 114 – 228 ways

• 107 records can be stored in 312500 − 625000 leaves
(= 107 / (16 .. 32))

• In the worst case the leaves would be on the level 4
(1142 = 12996 < 625,000 < 1143 = 1481544)

Lecture 11 COMPSCI.220.FS.T - 2004 15

Naming the B-Trees
• B-trees are named after their branching factors, that is,

m/2 − m
• A 4−7-tree is the B-tree of order m = 7

– 2..4 children per root
– 4..7 children per each non-root node

• A 3−4-tree is the B-tree of order m = 4
– 2..3 children per root
– 3..4 children per each non-root node

Lecture 11 COMPSCI.220.FS.T - 2004 16

3−4-Tree with 4−7 items per leaf

Lecture 11 COMPSCI.220.FS.T - 2004 17

Analysis of B-Trees

• A search or an insertion in a B-tree of order m with n
data items requires fewer than logmn disk accesses

• In practice, logmn is almost constant as long as m
is not small

• Data insertion is simple until the corresponding leaf is
not already full; then it must be split into 2 leaves, and
the parent(s) should be updated

Lecture 11 COMPSCI.220.FS.T - 2004 18

Analysis of B-Trees
• Additional disk writes for data insertion and deletion are

extremely rare
• An algorithm analysis beyond the scope of this course

shows that both insertions, deletions, and retrievals of data
have only logm/2n disk accesses in the worst case (e.g.,
log114625000 = 3 in the above example)

