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Balancing an AVLTree
• Two mirror-symmetric pairs of cases to rebalance the 

tree if after the insertion of a new key to the bottom the 
AVL property is invalidated

• Only one single or double rotation is sufficient
• Deletions are more complicated: O(log n) rotations 

can be required to restore the balance
• AVL balancing is not computationally efficient . Better 

balanced search trees: red-black, AA-trees, B-trees  
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Single Rotation
• The inserted new key invalidates the AVL property
• To restore the AVL tree, the root is moved to the node 

B and the rest of the tree is reorganised as the BST
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Double Rotation
• Balancing by more complex alternative representation 

of the tree (split of the ST2 and move of the root to D)
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Red-Black Tree
• A red-black tree is a binary search tree with the 

following ordering properties:
– Every node is coloured either red or black
– The root is black
– In a node is red, its children must be black
– Every path from a node to a leaf must contain the 

same number of black nodes
• Statement: because every path from the root to a leaf 

contains b black nodes, there are at least 2b black 
nodes in the tree 

Lecture 11 COMPSCI.220.FS.T - 2004 5

Red-Black Tree
• Proof of the statement by math induction:

it is valid for b=1 (only the root or also1-2 its children)
• Let it be valid for all red-black trees with b black nodes 

per path
• If a tree contains b+1 black nodes per path and it has 2

black children of the root, then it contains at least
2⋅(2b−1)+1 = 2b+1−1 black nodes
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Red-Black Tree
• If there is a red child of the root, it has necessarily only 

black children, and the total number of the black nodes is 
even larger

• There cannot be two consecutive red nodes on a path, so 
the height of a red-black tree is at most 2log2(n+1)

• Thus the search operation is logarithmic O(log n)
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Red-Black Tree 

Average case: a search in a red-black tree with n nodes built 
from random keys seems to require about log n
comparisons and an insertion seems to require, on the 
average, less than one rotation

Worst case: a search in a red-black tree with n nodes built from 
random keys requires less than 2log n + 2 comparisons, 
and an insertion requires fewer than one-quarter as many 
rotations as comparisons
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AA-Trees
• Software implementation of the operations insert and 

remove for red-black trees is a rather tricky process 
• A balanced search AA-tree is a method of choice if 

deletions are needed
• The AA-tree adds one extra condition to the red-black

tree: left children may not be red 
• This condition greatly simplifies the red-black tree 

remove operation
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B-Trees: Efficient External Search

• For very big databases, even log2n search steps may 
be unacceptable

• To reduce the number of disk accesses: an optimal m-
ary search tree of height about logmn

33322log1000n
54433log100n
98765log10n

3027242017log2n
109108107106105n

m-way branching  
lowers the optimal 
tree height by factor 
log2 m (i.e., by 3.3 if 
m=10)
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Multiway Search Tree of Order m = 4

• In an m-ary search tree, at most m−1 keys are used to 
decide which branch to take

• The data records are associated only with leaves, so 
the worst-case and average-case searches involve the 
tree height and the average leaf depth, respectively
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B-Tree Definition

• A B-tree of order m is defined as an m-ary balanced 
tree with the following properties:
– The root is either a leaf or it has between 2 and m 

children inclusive
– Every nonleaf node (except possibly the root) has 

between m/2 and m children inclusive
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B-Tree Definition
• A nonleaf node with µ children has µ−1 keys  (keyi :

i=1, …, µ−1) to guide the search
• keyi represents the smallest key in the subtree i+1
• All leaves are at the same depth
• The data items are stored at leaves, and every leaf 

contains between l/2 and l data items, for some l that 
may be chosen independently of the tree order m

• Assuming that each node represents a disk block, the 
choice is based on the size of items that are being stored
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Example of choosing m, l
• Let one data block hold 8192 bytes and each key use 

32 bytes
• Let there be 107 data records, 256 bytes per record 
• B-tree of order m: m−1 keys per node plus m branches 
• The branch is a number of another disk block, so let a 

branch be 4 bytes: 
32(m−1)+4m = 36m−32 < 8192 m=228

• Because the block size is 8192 bytes, l = 32 records of 
size 256 bytes fit in a single block 
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Example of choosing m, l

• Each leaf has between 16..32 data records inclusive, 
and each internal node, except from the root, branches 
in 114 – 228 ways

• 107 records can be stored in 312500 − 625000 leaves 
(= 107 / (16 .. 32))

• In the worst case the leaves would be on the level 4
(1142 = 12996 < 625,000 < 1143 = 1481544)
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Naming the B-Trees
• B-trees are named after their branching factors, that is,

m/2 − m
• A 4−7-tree is the B-tree of order m = 7

– 2..4 children per root 
– 4..7 children per each non-root node

• A 3−4-tree is the B-tree of order m = 4
– 2..3 children per root
– 3..4 children per each non-root node
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3−4-Tree with 4−7 items per leaf

Lecture 11 COMPSCI.220.FS.T - 2004 17

Analysis of B-Trees     

• A search or an insertion in a B-tree of order m with n 
data items requires fewer than logmn disk accesses

• In practice, logmn is almost constant as long as m
is not small

• Data insertion is simple until the corresponding leaf is 
not already full; then it must be split into 2 leaves, and 
the parent(s) should be updated
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Analysis of B-Trees     
• Additional disk writes for data insertion and deletion are 

extremely rare 
• An algorithm analysis beyond the scope of this course 

shows that both insertions, deletions, and retrievals of data 
have only logm/2n disk accesses in the worst case (e.g., 
log114625000 = 3 in the above example)


