
Introduction to Algorithm Analysis March 23, 2004

COMPSCI.220.FS.T - 2004 - Lecture 10 1

Lecture 10 COMPSCI.220.FS.T - 2004 1

Binary Search Tree
• BST converts a static binary search into a dynamic binary

search allowing to efficiently insert and delete data items
• Left-to-right ordering in a tree: for every node x, the

values of all the keys kleft in the left subtree are smaller
than the key kparent in x and the values of all the keys
kright in the right subtree are larger than the key in x:

kparentx
krightkleft

kleft < kparent < kright

Lecture 10 COMPSCI.220.FS.T - 2004 2

Binary Search Tree
Compare the left−right ordering in a binary search tree to the
bottom−up ordering in a heap where the key of each parent
node is greater than or equal to the key of any child node

Lecture 10 COMPSCI.220.FS.T - 2004 3

Binary Search Tree
• No duplicates! (attach them all to a single item)
• Basic operations:

– find: find a given search key or detect that it is not
present in the tree

– insert: insert a node with a given key to the tree if
it is not found

– findMin: find the minimum key
– findMax: find the maximum key
– remove: remove a node with a given key and

restore the tree if necessary

Lecture 10 COMPSCI.220.FS.T - 2004 4

BST: find / insert operations

find is the successful
binary search

insert creates a new node
at the point at which
the unsuccessful
search stops

Lecture 10 COMPSCI.220.FS.T - 2004 5

Binary Search Trees:
findMin / findMax / sort

• Extremely simple: starting at the root, branch repeatedly
left (findMin) or right (findMax) as long as a
corresponding child exists

• The root of the tree plays a role of the pivot in quickSort
• As in QuickSort, the recursive traversal of the tree can

sort the items:
– First visit the left subtree
– Then visit the root
– Then visit the right subtree

Lecture 10 COMPSCI.220.FS.T - 2004 6

Binary Search Tree: running time

• Running time for find, insert, findMin, findMax, sort:
O(log n) average-case and O(n) worst-case complexity
(just as in QuickSort)

BST of the depth about log n

Introduction to Algorithm Analysis March 23, 2004

COMPSCI.220.FS.T - 2004 - Lecture 10 2

Lecture 10 COMPSCI.220.FS.T - 2004 7

BST of the depth about n
15

10

10

15

8

5

1

8

5

4

4

3

3

1 1

15

10

4

8

3

5

Lecture 10 COMPSCI.220.FS.T - 2004 8

Binary Search Tree: node removal

• remove is the most complex operation:
– The removal may disconnect parts of the tree
– The reattachment of the tree must maintain the

binary search tree property
– The reattachment should not make the tree

unnecessarily deeper as the depth specifies the
running time of the tree operations

Lecture 10 COMPSCI.220.FS.T - 2004 9

BST: how to remove a node

• If the node k to be removed is a leaf, delete it
• If the node k has only one child, remove it after linking

its child to its parent node
• Thus, removeMin and removeMax are not

complex because the affected nodes are either leaves
or have only one child

Lecture 10 COMPSCI.220.FS.T - 2004 10

BST: how to remove a node

• If the node k to be removed has two children, then
replace the item in this node with the item with the
smallest key in the right subtree and remove this latter
node from the right subtree (Exercise: if possible, how
can the nodes in the left subtree be used instead?)

• The second removal is very simple as the node with the
smallest key does not have a left child

• The smallest node is easily found as in findMin

Lecture 10 COMPSCI.220.FS.T - 2004 11

BST: an Example of Node Removal

Lecture 10 COMPSCI.220.FS.T - 2004 12

Average-Case Performance of
Binary Search Tree Operations

• Internal path length of a binary tree is the sum of the
depths of its nodes:

IPL = 0 + 1 + 1 + 2 + 2 + 3 + 3 + 3
= 15

• Average internal path length T(n) of the binary search
trees with n nodes is O(n log n)

depth 0
1
2
3

Introduction to Algorithm Analysis March 23, 2004

COMPSCI.220.FS.T - 2004 - Lecture 10 3

Lecture 10 COMPSCI.220.FS.T - 2004 13

Average-Case Performance of
Binary Search Tree Operations

• If the n-node tree contains the root, the i-node left
subtree, and the (n−i−1)-node right subtree, then:

T(n) = n − 1 + T(i) + T(n−i−1)
because the root contributes 1 to the path length of
each of the other n − 1 nodes

• Averaging over all i; 0 ≤ i < n: the same recurrence as
for QuickSort:

so that T(n) is O(n log n)
())1T(...)1T()0T()1()T(2 −++++−= nnn n

Lecture 10 COMPSCI.220.FS.T - 2004 14

Average-Case Performance of
Binary Search Tree Operations

• Therefore, the average complexity of find or insert
operations is T(n) ⁄ n = O(log n)

• For n2 pairs of random insert / remove operations, an
expected depth is O(n0.5)

• In practice, for random input, all operations are about
O(log n) but the worst-case performance can be
O(n)!

Lecture 10 COMPSCI.220.FS.T - 2004 15

Balanced Trees
• Balancing ensures that the internal path lengths are

close to the optimal n log n
• The average-case and the worst-case complexity is

about O(log n) due to their balanced structure
• But, insert and remove operations take more time on

average than for the standard binary search trees
– AVL tree (1962: Adelson-Velskii, Landis)
– Red-black and AA-tree
– B-tree (1972: Bayer, McCreight)

Lecture 10 COMPSCI.220.FS.T - 2004 16

AVL Tree
• An AVL tree is a binary search tree with the following

additional balance property:
– for any node in the tree, the height of the left and

right subtrees can differ by at most 1
– the height of an empty subtree is −1

• The AVL-balance guarantees that the AVL tree of
height h has at least ch nodes, c > 1, and the
maximum depth of an n-item tree is about logcn

Lecture 10 COMPSCI.220.FS.T - 2004 17

AVL Tree

• Let Sh be the size of the smallest AVL tree of the height
h (it is obvious that S0 = 1, S1 = 2)

• This tree has two subtrees of the height h−1 and h−2,
respectively, by the balance condition

• It follows that Sh=Sh−1+Sh−2+1, or Sh = Fh+3 − 1
where Fi is the i-th Fibonacci number

Lecture 10 COMPSCI.220.FS.T - 2004 18

AVL Tree

• Therefore, for each n-node AVL tree:

• Thus, the worst-case height is at most 44% more than
the minimum height of the binary trees

()
()

328.1)1(log44.1
618.12

15

2

3

−+≤
≅+=

−≈≥ +

nh

Sn h
h

orwhere ,51 ϕ
ϕ

