
Introduction to Algorithm Analysis March 19, 2004

COMPSCI.220.FS.T - 2004 - Lecture 9 1

Lecture 9 COMPSCI.220.FS.T - 2004 1

Lower Bound for Sorting Complexity

• Each algorithm that sorts by comparing only pairs of
elements must use at least

log2(n!) ≅ n log2 n - 1.44n
comparisons in the worst case (that is, for some “worst”
input sequence) and in the average case.

• Stirling's approximation of the factorial (n!):

() nnn
enne

nnn −+≈≥≡⋅⋅⋅ 5.05.22!...21 π

Lecture 9 COMPSCI.220.FS.T - 2004 2

Decision Tree for Sorting n Items

Decision tree for n =3:
• i:j - a comparison of

ai and aj

• ijk - a sorted array
(ai aj ak)

• n! permutations
n! leaves

Sorting in descending
order of the numbers

Lecture 9 COMPSCI.220.FS.T - 2004 3

Decision Tree for Sorting n Items

• Decision tree for n=3: an array a = {a1, a2, a3}

• Example: {35, 10, 17}
– Comparison 1:2 (35 > 10) left branch a1 > a2

– Comparison 2:3 (10 < 17) right branch a2 < a3

– Comparison 1:3 (35 > 17) left branch a1 > a3

• Sorted array 132 {a1=35, a3=17, a2=10}

Lecture 9 COMPSCI.220.FS.T - 2004 4

Decision Tree

• Decision tree of height h has Lh ≤ 2h leaves
• Mathematical induction:

· h = 1: the tree of height 1 has L1 ≤ 2h leaves
· h−1 h: let the tree of height h−1 have Lh-1 ≤ 2h-1

leaves; the tree of height h consists of a root and two
subtrees at most of height h−1. Thus,

Lh = Lh−1 + Lh−1 ≤ 2h−1 + 2h−1 = 2h

Lecture 9 COMPSCI.220.FS.T - 2004 5

Worst-Case Complexity of Sorting

• The lower bound for the least height h of a decision
tree for sorting by pairwise comparisons which provides
Lh = 2h ≥ n! leaves is

h ≥ log2(n!) ≅ n log2 n − 1.44 n
• Thus, the worst-case complexity of the sorting is at least

O(n log n)

Lecture 9 COMPSCI.220.FS.T - 2004 6

Average-Case Sorting Complexity

• Each n-element decision tree has an average height at
least log (n!) ≥ n log n

• Let H(D,k) be the sum of heights for all k leaves of a
tree D and H(k) = minD H(D,k) denote the
minimum sum of heights

• Math induction to prove that H(k) ≥ k log k
· k = 1: Obviously, H(1) = 0
· k−1 k: Let H(m) ≥ m log m, m < k

Introduction to Algorithm Analysis March 19, 2004

COMPSCI.220.FS.T - 2004 - Lecture 9 2

Lecture 9 COMPSCI.220.FS.T - 2004 7

Average-Case Sorting Complexity
• The tree D with k leaves contains 2 subtrees, D1 with

m1 < k leaves and D2 with m2 < k leaves just under
the root (m1 + m2 = k):

Root

D 1
D 2

m leaves m leaves1 2

because the link to the
root adds 1 to each
leaf's height

),DH(),DH(),DH(2211 mmkk ++=

Lecture 9 COMPSCI.220.FS.T - 2004 8

Average-Case Sorting Complexity
{ }

{ }

() ()

nnnnn
n

n
kkkk

mm

mmmmkk

mmkk

kk

k

kmm

kmm

44.1log!log!
)!H(

!
loglog2)H(

:

loglogmin)H(

)H()H(min)H(

22

22

221

2211

21

21

21

−≅≤

=+≤

==

++≤

++=

=+

=+

 :is leaves

 least at withtree decision the ofheight average the Thus

 forsymmetry by reached is minimum The

:assumption induction theBy

:height minimum The

Lecture 9 COMPSCI.220.FS.T - 2004 9

Data Search
• Data record Specific key
• Goal: to find all records with keys matching a

given search key
• Purpose:

– to access information in the record for processing, or
– to update information in the record, or
– to insert a new record or to delete the record

Lecture 9 COMPSCI.220.FS.T - 2004 10

Types of Search

• Static search: stored data is not changed
– Given an integer search key X, return either the

position of X in an array A of records or an indication
that it is not present without altering the array A

– If X occurs more than once, return any occurrence
• Dynamic search: the data may be inserted or

deleted

Lecture 9 COMPSCI.220.FS.T - 2004 11

Sequential and Jump Search
• Sequential search is the only one for an unsorted array
• Successful / unsuccessful search: the O(n) worst-case

and average-case complexity
• Jump search O(n0.5) in a sorted array A of size n:

T = n⁄k jumps of length k to the points Bt = min{t⋅k, n}
and the sequential search among k items in a t-th part such that
Bt−1 ≤ key ≤ Bt−1; t = 1,…,T

0 1

B B B B B

n−1

0 1 2 t T
k k k

A

Lecture 9 COMPSCI.220.FS.T - 2004 12

Jump Search O(n0.5)

Worst-case complexity:

k
k
nkn +=),T(

2 01),T(

2)},{T(min)T(

2 knkn

nknn

nk

k
n

dk
d

k

=→=+−=

==

=

because

for :complexity Minimum

Introduction to Algorithm Analysis March 19, 2004

COMPSCI.220.FS.T - 2004 - Lecture 9 3

Lecture 9 COMPSCI.220.FS.T - 2004 13

Binary Search O(log n)

• Ordered array: key0 < key1 < … < keyn-1

• Compare the search key with the record keyi at
the middle position i = (n−1)/2
– if key = keyi, return i
– if key < keyi or key < keyi, then it must be in

the 1st or in the 2nd half of the array, respectively
• Apply the previous two steps to the chosen half of the

array iteratively (repeating halving principle)

Lecture 9 COMPSCI.220.FS.T - 2004 14

Implementation of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
low ← 0; high ← n − 1
while low ≤ high do

middle ← (low + high) / 2
if a[middle] < key then low ← middle + 1
else if a[middle] > key then high ← middle − 1
else return middle end if

end while
return ItemNotFound

end BinarySearch

Lecture 9 COMPSCI.220.FS.T - 2004 15

Binary
search:
detailed
analysis

Lecture 9 COMPSCI.220.FS.T - 2004 16

Comparison
structure:
the binary

(search) tree

Lecture 9 COMPSCI.220.FS.T - 2004 17

Worst-Case Complexity O(log n)
of Binary Search

• Let n = 2k − 1; k = 1,2,…, then the binary tree is
complete (each internal node has 2 children)

• The tree height is k −1
• Each tree level l contains 2l nodes for l = 0 (the root),

1, …, k − 2, k −1 (the leaves)
• l + 1 comparisons to find a key of level l
• The worst case: k = log2(n + 1) comparisons

Lecture 9 COMPSCI.220.FS.T - 2004 18

Average-Case Complexity O(log n)
of Binary Search

• Let Ci = l + 1 be the number of comparisons to find
keyi of level l; i = 0, …, n−1; l = 0, …, k−1

• Average number:
• There are 2l nodes at the level l, so that:

• By math induction: Sk−1 = 1+ (k−1) 2k, so that

()110
1 ... −+++= nn CCCC

10
1110 2...21... −

−− ⋅++⋅=≡+++ k
kn kSCCC

() 1)1(log2)1(1 2
11 −+=−+= + nkC n

nk
n

