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Lower Bound for Sorting Complexity

• Each algorithm that sorts by comparing only pairs of 
elements must use at least

log2(n!) ≅ n log2 n - 1.44n
comparisons in the worst case (that is, for some “worst” 
input sequence) and in the average case. 

• Stirling's approximation of the factorial (n!):
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Decision Tree for Sorting n Items

Decision tree for n =3: 
• i:j - a comparison of 

ai and aj

• ijk - a sorted array 
(ai aj ak) 

• n! permutations 
n! leaves

Sorting in descending
order of the numbers
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Decision Tree for Sorting n Items

• Decision tree for n=3: an array a = {a1, a2, a3}

• Example: {35, 10, 17}
– Comparison 1:2 (35 > 10) left branch   a1 > a2

– Comparison 2:3  (10 < 17) right branch a2 < a3

– Comparison 1:3  (35 > 17) left branch   a1 > a3

• Sorted array 132 {a1=35, a3=17, a2=10}
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Decision Tree

• Decision tree of height h has Lh ≤ 2h leaves
• Mathematical induction:

· h = 1: the tree of height 1 has L1 ≤ 2h leaves
· h−1 h: let the tree of height h−1 have Lh-1 ≤ 2h-1

leaves; the tree of height h consists of a root and two 
subtrees at most of height h−1. Thus, 

Lh = Lh−1 + Lh−1 ≤ 2h−1 + 2h−1 = 2h
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Worst-Case Complexity of Sorting

• The lower bound for the least height h of a decision 
tree for sorting by pairwise comparisons which provides
Lh = 2h ≥ n! leaves is

h ≥ log2( n!) ≅ n log2 n − 1.44 n
• Thus, the worst-case complexity of the sorting is at least

O(n log n)
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Average-Case Sorting Complexity

• Each n-element decision tree has an average height at 
least log (n!) ≥ n log n

• Let H(D,k) be the sum of heights for all k leaves of a 
tree D and H(k) = minD H(D,k) denote the 
minimum sum of heights

• Math induction to prove that H(k) ≥ k log k
· k = 1: Obviously, H(1) = 0
· k−1 k: Let H(m) ≥ m log m, m < k
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Average-Case Sorting Complexity
• The tree D with k leaves contains 2 subtrees, D1 with 

m1 < k leaves and  D2 with m2 < k leaves just under 
the root (m1 + m2 = k):

Root

D 1
D 2

m leaves m leaves1 2

because the link to the 
root adds 1 to each 
leaf's height
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Average-Case Sorting Complexity 
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Data Search
• Data record Specific key
• Goal: to find all records with keys matching a 

given search key
• Purpose: 

– to access information in the record for processing, or
– to update information in the record, or
– to insert a new record or to delete the record 
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Types of Search

• Static search: stored data is not changed
– Given an integer search key X, return either the 

position of X in an array A of records or an indication 
that it is not present without altering the array A 

– If X occurs more than once, return any occurrence
• Dynamic search: the data may be inserted or 

deleted 
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Sequential and Jump Search
• Sequential search is the only one for an unsorted array 
• Successful / unsuccessful search: the O(n) worst-case 

and average-case  complexity
• Jump search O(n0.5) in a sorted array A of size n:      

T = n⁄k jumps of length k to the points Bt = min{t⋅k, n} 
and the sequential search among k items in a t-th part such that 
Bt−1 ≤ key ≤ Bt−1; t = 1,…,T

0 1

B                    B                    B                           B                                 B

n−1

0                            1                            2                                      t                                              T
k k k

A
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Jump Search O(n0.5)

Worst-case complexity:
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Binary Search O(log n)

• Ordered array: key0 < key1 < … < keyn-1

• Compare the search key with the record keyi at 
the middle position i = (n−1)/2
– if key = keyi, return i
– if key < keyi or key < keyi, then it must be in 

the 1st or in the 2nd half of the array, respectively
• Apply the previous two steps to the chosen half of the 

array iteratively (repeating halving principle)
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Implementation of Binary Search

begin BinarySearch (an integer array a of size n, a search key)
low ← 0;   high ← n − 1
while low ≤ high do

middle ← ( low + high ) / 2
if a[ middle ] < key then low  ←  middle + 1
else if a[ middle ] > key then high  ←  middle − 1
else return middle end if

end while
return ItemNotFound

end BinarySearch
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Binary 
search: 
detailed 
analysis
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Comparison 
structure: 
the binary 

(search) tree

Lecture 9 COMPSCI.220.FS.T - 2004 17

Worst-Case Complexity O(log n)
of Binary Search

• Let n = 2k − 1; k = 1,2,…, then the binary tree is 
complete (each internal node has 2 children)

• The tree height is k −1
• Each tree level l contains 2l nodes for l = 0 (the root),

1, …, k − 2, k −1 (the leaves)
• l + 1 comparisons to find a key of level l
• The worst case: k = log2(n + 1) comparisons
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Average-Case Complexity O(log n)
of Binary Search

• Let Ci = l + 1 be the number of comparisons to find 
keyi of level l;   i = 0, …, n−1;   l = 0, …, k−1

• Average number:
• There are 2l nodes at the level l, so that:

• By math induction: Sk−1 = 1+ (k−1) 2k, so that
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