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Time Complexity of Algorithms

• If running time T(n) is O(f(n)) then the function
f measures time complexity
– Polynomial algorithms: T(n) is O(nk); k = const
– Exponential algorithm: otherwise

• Intractable problem:  if no polynomial algorithm 
is known for its solution
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Answer these questions

2⋅3n

23+n

23n

23 n 
0.001n3 + n2 + 1 
n2 + 100 n + 1 

Complexity O(n)Running time T(n)
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Answer these questions

30 log20(23n) 
actually NOT that hard…

100000 n2 + 10000 n 
0.0001 n2 + 10000 n 
100000 n + 10000 
0.0001 n + 10000 

Complexity O(n)Running time T(n)
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Big-Omega

• The function g(n) is Ω(f(n)) iff there exist a real 
positive constant c > 0 and a positive integer n0
such that g(n) ≥ cf(n) for all n ≥ n0
– Big Omega is just opposite to Big Oh
– It generalises the concept of “lower bound” (≥) in the 

same way as Big Oh generalises the concept of 
“upper bound” (≤)

– If f(n) is Ο(g(n)) then g(n) is Ω(f(n)) 
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Big-Theta

• The function g(n) is Θ(f(n)) iff there exist two 
real positive constants c1 > 0 and c2 > 0 and a 
positive integer n0 such that:

c1f(n) ≥ g(n) ≥ c2f(n) for all n ≥ n0
– Whenever two functions, f and g, are of the same 

order, g(n) is Θ(f(n)), they are each Big-Oh of the 
other: g(n) is Ο(f(n)) AND f(n) is Ο(g(n)) 
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Upper bounds of complexity

“Big-Oh” specifies an upper bound of complexity so 
that the following (and like) relationships hold: 

1 = O(log n) = O(n) = O(n log n) = …
log n = O(n) = O(n log n) = O(nα); α > 1 = …
n = O(n log n) = O(nα); α > 1 = O(2n) =…
n log n = O(nα); α > 1 = O(nk); k > α = …
nk = O(nα); α > k = O(2n) = …
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Time complexity growth

352920102n

3,74680711210n3

72,5227,25237910n2

1.40⋅10665,1281,27510n1.5

6.72⋅107883,8953,99710n log n
5.26⋅1085.26⋅10614,40010n
1 century1 year1 day1 minute

Number of data items processed per:f(n)
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Beware exponential complexity

☺If a linear, O(n), algorithm processes 10 items 
per minute, then it can process 14,400 items per 
day, 5,260,000 items per year, and 526,000,000
items per century. 

☻If an exponential, O(2n), algorithm processes 10
items per minute, then it can process only 20
items per day and 35 items per century...
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Big-Oh vs. Actual Running Time

• Example 1: let algorithms A and B have running 
times TA(n) = 20n ms and TB(n) = 0.1n log2n ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volume can A outperform B?

TA(n) < TB(n) if 20n < 0.1n log2n, or
log2n > 200, that is, when n >2200 ≈ 1060 !

• Thus, in all practical cases B is better than A…            
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Big-Oh vs. Actual Running Time

• Example 2: let algorithms A and B have running 
times TA(n) = 20n ms and TB(n) = 0.1n2 ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volumes A outperforms B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200
• Thus A is better than B in most practical cases 

except for n < 200 when B becomes faster…               
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“Big-Oh” Feature 1: Scaling 

• Constant factors are ignored. Only the powers and 
functions of n should be exploited:

for all c > 0 → c⋅f = O(f) where f ≡ f(n)
• It is this ignoring of constant factors that motivates 

for such a notation!
• Examples: 50n,  50000000n, and 0.0000005n

are O(n)
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“Big-Oh” Feature 2: Transitivity

• If h does not grow faster than g and g does not 
grow faster than f, then h does not grow faster 
than f:

h = O(g) AND g = O(f) → h = O(f)
• In other words, if f grows faster than g and g 

grows faster than h, then f grows faster than h
• Example: h = O(g); g = O(n2) → h = O(n2)



Introduction to Algorithm Analysis March 9, 2004

COMPSCI.220.FS.T - 2003 - Lecture 4 3

Lecture 4 COMPSCI.220.FS.T - 2004 13

Feature 3: The Rule of Sums
• The sum grows as its fastest term:
g1 = O(f1) AND g2 = O(f2) → g1+g2 = O(max{f1,f2})

– if g = O(f) and h = O(f), then g + h = O (f)
– if g = O(f), then g + f = O (f)

• Examples: 
– if  h = O(n) AND g = O(n2), then g + h = O(n2)
– if  h = O(n log n) AND g = O(n log log n), then 

g + h = O(n log n)

Lecture 4 COMPSCI.220.FS.T - 2004 14

The Rule of Sums
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Feature 4: The Rule of Products
• The upper bound for the product of functions is 

given by the product of the upper bounds for the
functions:
g1 = O(f1) AND g2 = O(f2) → g1 ⋅ g2 = O( f1 ⋅ f2 )
– if g = O(f) and h = O(f), then g ⋅ h = O (f2)
– if g = O(f), then g ⋅ h = O (f ⋅ h)

• Example: 
if h = O(n) AND g = O(n2), then g ⋅ h = O(n3)
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Ascending order of complexity

1 ← log log n ← log n ← n ← n log n
← nα; 1<α <2 ← n2 ← n3 ← nm; m > 3 ← 2n …

Questions:
– Where is the place of n2 log n?
– Where is the place of  n2.79? 

• Answers: …← n2 ← n2 log n ← n2.79 ← n3←…
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Answers to the questions

O(3n) 2⋅3n

O(2n) as 23+n≡23⋅2n23+n

O(8n) as 23n≡(23)n23n

O(n)23 n 
O(n3)0.001n3 + n2 + 1 
O(n2)n2 + 100 n + 1 

Complexity O(n)Running time T(n)
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Answers to the questions

O(log n) as 
logc(ab)=logca +logcb

30 log20(23n) 
actually NOT that hard…

O(n2)100000 n2 + 10000 n 
O(n2)0.0001 n2 + 10000 n 
O(n)100000 n + 10000 
O(n)0.0001 n + 10000 

Complexity O(n)Running time T(n)


