
Introduction to Algorithm Analysis March 9, 2004

COMPSCI.220.FS.T - 2003 - Lecture 4 1

Lecture 4 COMPSCI.220.FS.T - 2004 1

Time Complexity of Algorithms

• If running time T(n) is O(f(n)) then the function
f measures time complexity
– Polynomial algorithms: T(n) is O(nk); k = const
– Exponential algorithm: otherwise

• Intractable problem: if no polynomial algorithm
is known for its solution

Lecture 4 COMPSCI.220.FS.T - 2004 2

Answer these questions

2⋅3n

23+n

23n

23 n
0.001n3 + n2 + 1
n2 + 100 n + 1

Complexity O(n)Running time T(n)

Lecture 4 COMPSCI.220.FS.T - 2004 3

Answer these questions

30 log20(23n)
actually NOT that hard…

100000 n2 + 10000 n
0.0001 n2 + 10000 n
100000 n + 10000
0.0001 n + 10000

Complexity O(n)Running time T(n)

Lecture 4 COMPSCI.220.FS.T - 2004 4

Big-Omega

• The function g(n) is Ω(f(n)) iff there exist a real
positive constant c > 0 and a positive integer n0
such that g(n) ≥ cf(n) for all n ≥ n0
– Big Omega is just opposite to Big Oh
– It generalises the concept of “lower bound” (≥) in the

same way as Big Oh generalises the concept of
“upper bound” (≤)

– If f(n) is Ο(g(n)) then g(n) is Ω(f(n))

Lecture 4 COMPSCI.220.FS.T - 2004 5

Big-Theta

• The function g(n) is Θ(f(n)) iff there exist two
real positive constants c1 > 0 and c2 > 0 and a
positive integer n0 such that:

c1f(n) ≥ g(n) ≥ c2f(n) for all n ≥ n0
– Whenever two functions, f and g, are of the same

order, g(n) is Θ(f(n)), they are each Big-Oh of the
other: g(n) is Ο(f(n)) AND f(n) is Ο(g(n))

Lecture 4 COMPSCI.220.FS.T - 2004 6

Upper bounds of complexity

“Big-Oh” specifies an upper bound of complexity so
that the following (and like) relationships hold:

1 = O(log n) = O(n) = O(n log n) = …
log n = O(n) = O(n log n) = O(nα); α > 1 = …
n = O(n log n) = O(nα); α > 1 = O(2n) =…
n log n = O(nα); α > 1 = O(nk); k > α = …
nk = O(nα); α > k = O(2n) = …

Introduction to Algorithm Analysis March 9, 2004

COMPSCI.220.FS.T - 2003 - Lecture 4 2

Lecture 4 COMPSCI.220.FS.T - 2004 7

Time complexity growth

352920102n

3,74680711210n3

72,5227,25237910n2

1.40⋅10665,1281,27510n1.5

6.72⋅107883,8953,99710n log n
5.26⋅1085.26⋅10614,40010n
1 century1 year1 day1 minute

Number of data items processed per:f(n)

Lecture 4 COMPSCI.220.FS.T - 2004 8

Beware exponential complexity

☺If a linear, O(n), algorithm processes 10 items
per minute, then it can process 14,400 items per
day, 5,260,000 items per year, and 526,000,000
items per century.

☻If an exponential, O(2n), algorithm processes 10
items per minute, then it can process only 20
items per day and 35 items per century...

Lecture 4 COMPSCI.220.FS.T - 2004 9

Big-Oh vs. Actual Running Time

• Example 1: let algorithms A and B have running
times TA(n) = 20n ms and TB(n) = 0.1n log2n ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volume can A outperform B?

TA(n) < TB(n) if 20n < 0.1n log2n, or
log2n > 200, that is, when n >2200 ≈ 1060 !

• Thus, in all practical cases B is better than A…

Lecture 4 COMPSCI.220.FS.T - 2004 10

Big-Oh vs. Actual Running Time

• Example 2: let algorithms A and B have running
times TA(n) = 20n ms and TB(n) = 0.1n2 ms

• In the “Big-Oh”sense, A is better than B…
• But: on which data volumes A outperforms B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200
• Thus A is better than B in most practical cases

except for n < 200 when B becomes faster…

Lecture 4 COMPSCI.220.FS.T - 2004 11

“Big-Oh” Feature 1: Scaling

• Constant factors are ignored. Only the powers and
functions of n should be exploited:

for all c > 0 → c⋅f = O(f) where f ≡ f(n)
• It is this ignoring of constant factors that motivates

for such a notation!
• Examples: 50n, 50000000n, and 0.0000005n

are O(n)

Lecture 4 COMPSCI.220.FS.T - 2004 12

“Big-Oh” Feature 2: Transitivity

• If h does not grow faster than g and g does not
grow faster than f, then h does not grow faster
than f:

h = O(g) AND g = O(f) → h = O(f)
• In other words, if f grows faster than g and g

grows faster than h, then f grows faster than h
• Example: h = O(g); g = O(n2) → h = O(n2)

Introduction to Algorithm Analysis March 9, 2004

COMPSCI.220.FS.T - 2003 - Lecture 4 3

Lecture 4 COMPSCI.220.FS.T - 2004 13

Feature 3: The Rule of Sums
• The sum grows as its fastest term:
g1 = O(f1) AND g2 = O(f2) → g1+g2 = O(max{f1,f2})

– if g = O(f) and h = O(f), then g + h = O (f)
– if g = O(f), then g + f = O (f)

• Examples:
– if h = O(n) AND g = O(n2), then g + h = O(n2)
– if h = O(n log n) AND g = O(n log log n), then

g + h = O(n log n)

Lecture 4 COMPSCI.220.FS.T - 2004 14

The Rule of Sums

Lecture 4 COMPSCI.220.FS.T - 2004 15

Feature 4: The Rule of Products
• The upper bound for the product of functions is

given by the product of the upper bounds for the
functions:
g1 = O(f1) AND g2 = O(f2) → g1 ⋅ g2 = O(f1 ⋅ f2)
– if g = O(f) and h = O(f), then g ⋅ h = O (f2)
– if g = O(f), then g ⋅ h = O (f ⋅ h)

• Example:
if h = O(n) AND g = O(n2), then g ⋅ h = O(n3)

Lecture 4 COMPSCI.220.FS.T - 2004 16

Ascending order of complexity

1 ← log log n ← log n ← n ← n log n
← nα; 1<α <2 ← n2 ← n3 ← nm; m > 3 ← 2n …

Questions:
– Where is the place of n2 log n?
– Where is the place of n2.79?

• Answers: …← n2 ← n2 log n ← n2.79 ← n3←…

Lecture 4 COMPSCI.220.FS.T - 2004 17

Answers to the questions

O(3n) 2⋅3n

O(2n) as 23+n≡23⋅2n23+n

O(8n) as 23n≡(23)n23n

O(n)23 n
O(n3)0.001n3 + n2 + 1
O(n2)n2 + 100 n + 1

Complexity O(n)Running time T(n)

Lecture 4 COMPSCI.220.FS.T - 2004 18

Answers to the questions

O(log n) as
logc(ab)=logca +logcb

30 log20(23n)
actually NOT that hard…

O(n2)100000 n2 + 10000 n
O(n2)0.0001 n2 + 10000 n
O(n)100000 n + 10000
O(n)0.0001 n + 10000

Complexity O(n)Running time T(n)

