
Introduction to Algorithm Analysis March 5, 2004

COMPSCI.220.S1.T - 2004 - Lecture 3 1

Lecture 3 COMPSCI.220.S1.T - 2004 1

Running Time: Estimation Rules 

• Running time is proportional to the most 
significant term in T(n)

• Once a problem size becomes large, the most 
significant term is that which has the largest 
power of n

• This term increases faster than other terms 
which reduce in significance
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Running Time: Estimation Rules 

• Running time T(n) = 0.25n2+0.5n ≅ 0.25n2
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Running Time: Estimation Rules 

• Constants of proportionality depend on the 
compiler, language, computer, etc. 
– It is useful to ignore the constants when analysing 

algorithms. 
• Constants of proportionality are reduced by using faster 

hardware or minimising time spent on the “inner loop”
– But this would not effect behaviour of an algorithm 

for a large problem!
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Algorithm Versus Implementation

• Analysis of time 
complexity takes 
no account of the 
constant of 
proportionality c

• Analysis involves 
relative changes 
of running time
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Elementary Operations
• Basic arithmetic operations (+ ; – ; ∗ ; / ; % )

– Relational operators ( ==, !=, >, <, >=, <= ) 
• Boolean operations (AND,OR,NOT), 
• Branch operations, …

Input for problem domains (meaning of n): 
Sorting: n items                     Graph / path:  n vertices / edges
Image processing: n pixels Text processing: string length
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“Big-Oh” Tool O(…) for 
Analysing Algorithms

Typical curves of 
time complexity:

T(n) ∝ log n, 
T(n) ∝ n
T(n) ∝ n log n
T(n) ∝ nk

T(n) ∝ 2n
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Relative growth: G(n) = f(n) / f(5)
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“Big-Oh” O(…): Linear Complexity

Linear complexity ↔
time T(n) ∝ n 

O(n) ↔ running time 
does not grow faster 
than a linear function 
of the problem size n
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Logarithmic “Big-Oh” Complexity

Logarithmic complexity:
time T(n) ∝ log n

O(log n) ↔ running time 
does not grow faster 
than a log function of 
the problem size n
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g(n) is O(f(n)), or g(n) = O(f(n))

Function g(n) is “Big-
Oh” of f(n) if, starting 
from some n > n0,
there always exist a 
function c·f(n) that 
grows faster than the 
function g(n)
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“Big-Oh” O(…) : Formal Definition

for those who are not afraid of Maths:
• Let f(n) and g(n) be positive-valued functions 

defined on the positive integers n
• The function g is defined as O(f) and is said to 

be of the order of f(n) iff (read: if and only if) there 
are a real constant c > 0 and an integer n0 such 
that g(n) ≤ c·f(n) for all n > n0

Lecture 3 COMPSCI.220.S1.T - 2004 12

“Big-Oh” O(…) : Informal Meaning

for those who are afraid of Maths: g is O(f) means 
that the algorithm with time complexity g runs 
(for large n) at most as fast, within a constant 
factor, as the algorithm  with time complexity f

Note that the formal definition of “Big-Oh” differs slightly 
from the Stage I calculus: 
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“Big-Oh” O(…) : Informal Meaning

• g is O(f) means that the order of time complexity of 
the function g is asymptotically less than or equal 
to the order of time complexity of the function f
– Asymptotical behaviour ↔ only for the large values of n
– Two functions are of the same order when they each are

“Big-Oh” of the other: f = O(g) AND g = O(f)
– This property is called “Big-Theta”: g = Θ(f)
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O(…) Comparisons: Two Crucial Ideas

• The exact running time function is not important, 
since it can be multiplied by any arbitrary positive 
constant. 

• Two functions are compared only asymtotically, 
for large n, and not near the origin
– If the constants involved are very large, then the 

asymptotical behaviour is of no practical interest!
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“Big-Oh” Examples - 1
Linear function g(n) = an + b; a > 0, is O(n):

g(n) < (a + |b|) · n for all n ≥ 1
Do not write O(2n) or O(an + b) as this means still O(n)!
O(n) - running time:

T(n) = 3n + 1             T(n) = 108 + n
T(n) = 50 + 10– 8 · n T(n) = 106 · n + 1

Remember that “Big-Oh” describes an “asymptotic behaviour”
for large problem sizes
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“Big-Oh” Examples - 2
Polynomial Pk(n) = ak nk + a k-1nk-1 + … + a1 n + a0; 

ak > 0, is O(nk)
Do not write O(Pk(n)) as this means still O(nk)!
O(nk) - running time:
• T(n) = 3n2 + 5n + 1 is O(n2)             Is it also O(n3)?
• T(n) = 10−8 n3 + 108 n2 + 30 is O(n3)
• T(n) = 10−8 n8 + 1000n + 1 is O(n8)
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“Big-Oh” Examples - 3
Exponential g(n) = 2n+k is O( 2n):   2n+k = 2k · 2n for all n
Exponential  g(n) = mn+k is O( ln), l ≥ m > 1: 

mn+k ≤ ln+k = lk · ln for all  n, k 
• Remember that a “brute-force” search for the best 

combination of n interdependent binary decisions by 
exhausting all the 2n possible combinations has the 
exponential time complexity, and try to find more 
efficient ways to solve your problem if n ≥ 20 … 30
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“Big-Oh” Examples - 4
Logarithmic function 

g(n) = logm n
is of order log2 n because 

logm n = logm 2 · log2 n for all  n, m > 0

Do not write O(logm n) as this means still O(log n)!

You will find later that the most efficient search for data in 
an ordered array has the logarithmic complexity


