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. Running Time: Estimation Rules ., Algorithm Versus Implementation
of Auckland of Auckland (00LS_for ANALYSING TIME COMPLEXITY)
* Running time is proportional to the most « Analysis of ime """
significant term in T(7) complexity takes
+ Once a problem size becomes large, the most no account of the
significant term is that which has the largest constant of
power of n proportionality ¢
« This term increases faster than other terms * Analysis involves _
which reduce in significance relative changes T

of running time oo oy & A
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. Running Time: Estimation Rules Elementary Operations
of Auckland of Auckland
+ Running time T(z) = 0.257?+0.5n = 0.251> + Basic arithmetic operations (+; —; *;/; %)
— Relational operators ( ==, !=, >, <, >=, <=)
n T(n) | 0.25n% 0.5n Bool ) AND.ORNOT
vale | % oolean operations (AND,OR,NOT),
10 30 25 5 16.7 » Branch operations, ...
50 | 650 | 625 | 25 3.8 Input for problem domains (meaning of »):
100 | 2,550 | 2,500 | 50 2.0 Sorting: 7 items Graph / path: n vertices / edges
500 |62,750|62,500| 250 0.4 Image processing: » pixels Text processing: string length
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@ N o @ “Big-Oh” Tool O(...) for
The . The . .
s Running Time: Estimation Rules e B SinglAIgoThi
Tin), ot X
+ Constants of proportionality depend on the Typical curves of t i
compiler, language, computer, etc. time complexity:
— It is useful to ignore the constants when analysing T(n) o« log n,
algorithms.
o : T(n) < n
+ Constants of proportionality are reduced by using faster )
hardware or minimising time spent on the “inner loop” T(n) < nlogn
— But this would not effect behaviour of an algorithm T(n) o< n*
for a large problem! T(n) oc 27 =

0100 200 300 400 500 600 00 0O SO0
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i, Relative growth: G(n) ="/ 45, i, 80) 18 O(H(m), or &) = O(F(m)
n ny=n
Complexity Input size n . . u;: I
Function f(n) 5 25 125 625 Funct:on g(n) s 3|g-
Gonslant ] | ] ) Oh” of f(n) if, starting
Logarithm log n 1 2 3 4 from some n > g, ™ ‘ !
Linear n : 3 25 125 there always exist a - (o) =03°n
T T 10 75 500 function c-f(n) that &7 e
Quadratic n? 1 25 625 | 15,625 grows faster than the
Cubic s 1 125 | 15625 | 5° function g(n) -
Exponential on 1 220 2120 2620 n=(n,=238) gn)=( finj=n )
n>(n, = 1000): gin)<({ fin)=03n )
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W “Big-Oh” O(...): Linear Complexity W “Big-Oh” O(...) : Formal Definition
of Auckland | T(n) Sn of Auckland

Linear complexity <> for those who are not afraid of Maths:

* Let f(n) and g(n) be positive-valued functions
defined on the positive integers n

+ The function g is defined as O(f) and is said to
be of the order of f(n) iff (read: if and only if) there
are a real constant ¢ > 0 and an integer n,, such
that g(n) < c-f(n) for all n > n,

time T(n) o< n

O(n) <> running time
does not grow faster
than a linear function
of the problem size n

Lecture 3 COMPSCI.220.81.T - 2004 8 E Lecture 3 COMPSCI.220.81.T - 2004 1 E

»  Logarithmic “Big-oh” Complexity
of Auckland

“Big-Oh” O(...) : Informal Meaning

Lniversity
of Auckland

y Tin) log

Logarithmic complexity: 50 logn for those who are afraid of Maths: g is O(f) means
time T(n) o log n that the algorithm with time complexity g runs
(for large n) at most as fast, within a constant

O(log n) <> running time

does not grow faster 25logn factor, as the algorithm with time complexity £

than a log function of Note that the formal definition of “Big-Oh™ differs slightly
the problem size 7 from the Stage | calculus:
I

i £ -
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» “Big-Oh” O...) : Informal Meaning

University
of Auckland

* gis O(f) means that the order of time complexity of
the function g is asymptotically less than or equal
to the order of time complexity of the function f

— Asymptotical behaviour <> only for the large values of n

— Two functions are of the same order when they each are
“Big-Oh” of the other: f= O(g) AND g = O(f)

— This property is called “Big-Theta”: g = ©(f)
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e O(...) Comparisons: Two Crucial Ideas
of Auckland

+ The exact running time function is not important,
since it can be multiplied by any arbitrary positive
constant.

+ Two functions are compared only asymtotically,
for large n, and not near the origin

— If the constants involved are very large, then the
asymptotical behaviour is of no practical interest!
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“Big-Oh” Examples - 1
of Auckland

Linear function g(n) = an + b; a > 0, is O(n):
gn)<(a+|b)-nforalln>1
Do not write O(2r) or O(an + b) as this means still O(»)!
O(n) - running time:
T(n)=3n+1 T(n)=108 +n
T(n)=50+10"8-n T(m)=10°-n+1
Remember that “Big-Oh” describes an “asymptotic behaviour”
for large problem sizes
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“Big-Oh” Examples - 2
of Auckland

Polynomial Py(n) = a, n* + a . n¥' + ... + a; n + ag;
a,> 0, is O(n*)

Do not write O(P,(n)) as this means still O(#¥)!

O(x*) - running time:

e T(n)=3n+5n+ 1is O(n?) Is it also O(#3)?

o« T(n) =108 13 + 108 n2 + 30 is O(n%)

o T(n)=10"8n® + 1000n + 1 is O(n®)
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& _
“Big-Oh” Examples - 3

Exponential g(r) = 27tk is O( 27): 27tk=2k-2nforall n
Exponential g(n) = m"*is O(I?), [>m > I:
mtk< k= fk-  forall n, k

+ Remember that a “brute-force” search for the best

combination of 7 interdependent binary decisions by

exhausting all the 2" possible combinations has the

exponential time complexity, and try to find more
efficient ways to solve your problem if » > 20 ... 30
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“Big-Oh” Examples - 4
of Auckland

Logarithmic function
g(n) =log,,n
is of order log, n because
log,, n=1og,, 2 - log, n forall n,m>0
Do not write O(log,, 7) as this means still O(log »)!

You will find later that the most efficient search for data in
an ordered array has the logarithmic complexity
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