
Introduction to Algorithm Analysis March 5, 2004

COMPSCI.220.S1.T - 2004 - Lecture 3 1

Lecture 3 COMPSCI.220.S1.T - 2004 1

Running Time: Estimation Rules

• Running time is proportional to the most
significant term in T(n)

• Once a problem size becomes large, the most
significant term is that which has the largest
power of n

• This term increases faster than other terms
which reduce in significance

Lecture 3 COMPSCI.220.S1.T - 2004 2

Running Time: Estimation Rules

• Running time T(n) = 0.25n2+0.5n ≅ 0.25n2

0.425062,50062,750500
2.0502,5002,550100
3.82562565050

16.75253010
%value

0.5n0.25n2T(n)n

Lecture 3 COMPSCI.220.S1.T - 2004 3

Running Time: Estimation Rules

• Constants of proportionality depend on the
compiler, language, computer, etc.
– It is useful to ignore the constants when analysing

algorithms.
• Constants of proportionality are reduced by using faster

hardware or minimising time spent on the “inner loop”
– But this would not effect behaviour of an algorithm

for a large problem!

Lecture 3 COMPSCI.220.S1.T - 2004 4

Algorithm Versus Implementation

• Analysis of time
complexity takes
no account of the
constant of
proportionality c

• Analysis involves
relative changes
of running time

Lecture 3 COMPSCI.220.S1.T - 2004 5

Elementary Operations
• Basic arithmetic operations (+ ; – ; ∗ ; / ; %)

– Relational operators (==, !=, >, <, >=, <=)
• Boolean operations (AND,OR,NOT),
• Branch operations, …

Input for problem domains (meaning of n):
Sorting: n items Graph / path: n vertices / edges
Image processing: n pixels Text processing: string length

Lecture 3 COMPSCI.220.S1.T - 2004 6

“Big-Oh” Tool O(…) for
Analysing Algorithms

Typical curves of
time complexity:

T(n) ∝ log n,
T(n) ∝ n
T(n) ∝ n log n
T(n) ∝ nk

T(n) ∝ 2n

Introduction to Algorithm Analysis March 5, 2004

COMPSCI.220.S1.T - 2004 - Lecture 3 2

Lecture 3 COMPSCI.220.S1.T - 2004 7

Relative growth: G(n) = f(n) / f(5)

2620212022012nExponential
5915,6251251n3Cubic

15,625625251n2Quadratic
50075101n log n“n log n”
1252551nLinear

4321log nLogarithm
11111Constant

625125255f(n)Function
Input size nComplexity

Lecture 3 COMPSCI.220.S1.T - 2004 8

“Big-Oh” O(…): Linear Complexity

Linear complexity ↔
time T(n) ∝ n

O(n) ↔ running time
does not grow faster
than a linear function
of the problem size n

Lecture 3 COMPSCI.220.S1.T - 2004 9

Logarithmic “Big-Oh” Complexity

Logarithmic complexity:
time T(n) ∝ log n

O(log n) ↔ running time
does not grow faster
than a log function of
the problem size n

Lecture 3 COMPSCI.220.S1.T - 2004 10

g(n) is O(f(n)), or g(n) = O(f(n))

Function g(n) is “Big-
Oh” of f(n) if, starting
from some n > n0,
there always exist a
function c·f(n) that
grows faster than the
function g(n)

Lecture 3 COMPSCI.220.S1.T - 2004 11

“Big-Oh” O(…) : Formal Definition

for those who are not afraid of Maths:
• Let f(n) and g(n) be positive-valued functions

defined on the positive integers n
• The function g is defined as O(f) and is said to

be of the order of f(n) iff (read: if and only if) there
are a real constant c > 0 and an integer n0 such
that g(n) ≤ c·f(n) for all n > n0

Lecture 3 COMPSCI.220.S1.T - 2004 12

“Big-Oh” O(…) : Informal Meaning

for those who are afraid of Maths: g is O(f) means
that the algorithm with time complexity g runs
(for large n) at most as fast, within a constant
factor, as the algorithm with time complexity f

Note that the formal definition of “Big-Oh” differs slightly
from the Stage I calculus:

{ } cn
n

n
=

∞→
)f(

)g(lim

Introduction to Algorithm Analysis March 5, 2004

COMPSCI.220.S1.T - 2004 - Lecture 3 3

Lecture 3 COMPSCI.220.S1.T - 2004 13

“Big-Oh” O(…) : Informal Meaning

• g is O(f) means that the order of time complexity of
the function g is asymptotically less than or equal
to the order of time complexity of the function f
– Asymptotical behaviour ↔ only for the large values of n
– Two functions are of the same order when they each are

“Big-Oh” of the other: f = O(g) AND g = O(f)
– This property is called “Big-Theta”: g = Θ(f)

Lecture 3 COMPSCI.220.S1.T - 2004 14

O(…) Comparisons: Two Crucial Ideas

• The exact running time function is not important,
since it can be multiplied by any arbitrary positive
constant.

• Two functions are compared only asymtotically,
for large n, and not near the origin
– If the constants involved are very large, then the

asymptotical behaviour is of no practical interest!

Lecture 3 COMPSCI.220.S1.T - 2004 15

“Big-Oh” Examples - 1
Linear function g(n) = an + b; a > 0, is O(n):

g(n) < (a + |b|) · n for all n ≥ 1
Do not write O(2n) or O(an + b) as this means still O(n)!
O(n) - running time:

T(n) = 3n + 1 T(n) = 108 + n
T(n) = 50 + 10– 8 · n T(n) = 106 · n + 1

Remember that “Big-Oh” describes an “asymptotic behaviour”
for large problem sizes

Lecture 3 COMPSCI.220.S1.T - 2004 16

“Big-Oh” Examples - 2
Polynomial Pk(n) = ak nk + a k-1nk-1 + … + a1 n + a0;

ak > 0, is O(nk)
Do not write O(Pk(n)) as this means still O(nk)!
O(nk) - running time:
• T(n) = 3n2 + 5n + 1 is O(n2) Is it also O(n3)?
• T(n) = 10−8 n3 + 108 n2 + 30 is O(n3)
• T(n) = 10−8 n8 + 1000n + 1 is O(n8)

Lecture 3 COMPSCI.220.S1.T - 2004 17

“Big-Oh” Examples - 3
Exponential g(n) = 2n+k is O(2n): 2n+k = 2k · 2n for all n
Exponential g(n) = mn+k is O(ln), l ≥ m > 1:

mn+k ≤ ln+k = lk · ln for all n, k
• Remember that a “brute-force” search for the best

combination of n interdependent binary decisions by
exhausting all the 2n possible combinations has the
exponential time complexity, and try to find more
efficient ways to solve your problem if n ≥ 20 … 30

Lecture 3 COMPSCI.220.S1.T - 2004 18

“Big-Oh” Examples - 4
Logarithmic function

g(n) = logm n
is of order log2 n because

logm n = logm 2 · log2 n for all n, m > 0

Do not write O(logm n) as this means still O(log n)!

You will find later that the most efficient search for data in
an ordered array has the logarithmic complexity

