

Typical Complexity Curves

 $T(n) \propto \log n$ logarithmic

 $T(n) \propto n$ linear

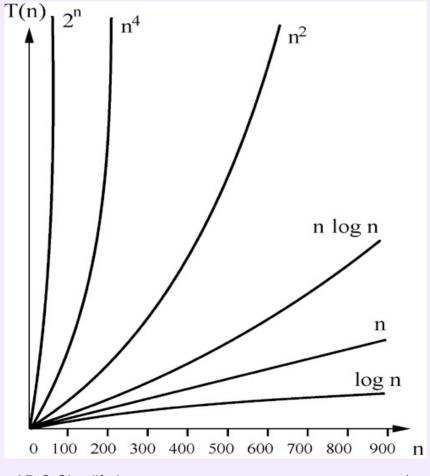
 $T(n) \propto n \log n$

 $T(n) \propto n^2$ quadratic

 $T(n) \propto n^3$ cubic

 $T(n) \propto n^k$ polynomial

 $T(n) \propto 2^n$ exponential



Relative growth: g(n) = f(n)/f(5)

		Input size <i>n</i>			
Function $f(n)$		5	25	125	625
Constant	1	1	1	1	1
Logarithm	$\log_5 n$	1	2	3	4
Linear	n	1	5	25	125
"n log n"	$n \log_5 n$	1	10	75	500
Quadratic	n^2	1	25 (5 ²)	625 (54)	15,625 (5 ⁶)
Cubic	n^3	1	125 (5 ³)	15,625 (5 ⁶)	1,953,125 (59)
Exponential	2^n	1	$2^{20} \approx 10^6$	$2^{120} \approx 10^{36}$	$2^{620} \approx 10^{187}$

"Big-Oh" O(...): Formal Definition

Let f(n) and g(n) be nonnegative-valued functions defined on nonnegative integers n

The function g(n) is O(f) (read: g(n) is **Big Oh** of f(n)) **iff** there exists a positive real constant c and a positive integer n_0 such that $g(n) \le cf(n)$ for all $n > n_0$

- Notation "iff" is an abbreviation of "if and only if"
- Example 1.9 (p.15): $g(n) = 100\log_{10}n$ is O(n) $\Leftarrow g(n) < n$ if n > 238 or g(n) < 0.3n if n > 1000

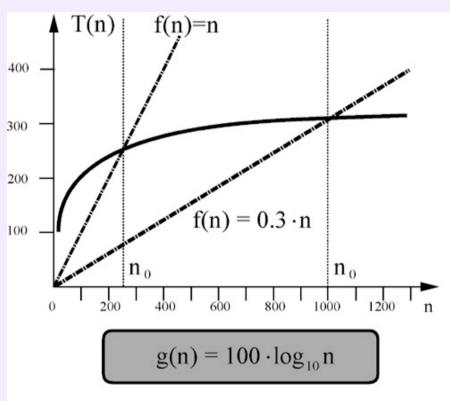
g(n) is O(f(n)), or g(n) = O(f(n))

g(n) is O(f(n)) if:

a constant c > 0 exists such that cf(n) grows faster than g(n) for all $n > n_0$

To prove that some function g(n) is O(f(n)) means to show for g and f such constants c and n_0 exist

The constants c and n_0 are interdependent



$$n > (n_0 = 238)$$
: $g(n) < (f(n) = n)$

$$n > (n_0 = 1000)$$
: $g(n) < (f(n) = 0.3 n)$

"Big-Oh" O(...): Informal Meaning

• If g(n) is O(f(n)), an algorithm with running time g(n) runs **asymptotically** (i.e. for large n), at most as fast, to within a constant factor, as an algorithm with running time f(n)

O(f(n)) specifies an <u>asymptotic upper bound</u>, i.e. g(n) for large n may approach closer and closer to cf(n)

Notation g(n) = O(f(n)) means actually $g(n) \in O(f(n))$, i.e. g(n) is a member of the set O(f(n)) of functions increasing with the same or lesser rate if $n \to \infty$

Big Omega $\Omega(...)$

• The function g(n) is $\Omega(f(n))$ iff there exists a positive real constant c and a positive integer n_0 such that $g(n) \ge cf(n)$ for all $n > n_0$

 $\Omega(...)$ is opposite to O(...) and specifies an <u>asymptotic</u> lower bound: if g(n) is $\Omega(f(n))$ then f(n) is O(g(n))

Example 1: $5n^2$ is $\Omega(n) \Leftarrow 5n^2 \geq 5n$ for $n \geq 1$

Example 2: 0.01n is $\Omega(\log n) \leftarrow 0.01n \ge 0.5\log_{10}n$ for $n \ge 100$

Big Theta $\Theta(...)$

• The function g(n) is $\Theta(f(n))$ iff there exists two positive real constants c_1 and c_2 and a positive integer n_0 such that $c_1 f(n) \leq g(n) \leq c_2 f(n)$ for all $n > n_0$

$$g(n)$$
 is $\Theta(f(n)) \Rightarrow$
 $g(n)$ is $O(f(n))$ AND $f(n)$ is $O(g(n))$

Ex.: the same rate of increase for $g(n) = n + 5n^{0.5}$ and f(n) = n $\Rightarrow n \leq n + 5n^{0.5} \leq 6n$ for n > 1

Comparisons: Two Crucial Ideas

- Exact running time function is unimportant since it can be multiplied by an arbitrary positive constant.
- Two functions are compared *asymptotically*, for large *n*, and not near the origin
 - If the constants c involved are very large, then the asymptotical behaviour is of no practical interest!
 - To prove that g(n) is **not** O(f(n)), $\Omega(f(n))$, or Θ (f(n)) we have to show that the desired constants do not exist, i.e. lead to a contradiction

Example 1.12, p.17

Linear function g(n) = an + b; a > 0, is O(n)

To prove, we form a chain of inequalities:

$$g(n) \le a \ n + |b| \le g(n) \le (a + |b|) \cdot n$$
 for all $n \ge 1$

<u>Do not write</u> O(2n) <u>or</u> O(an + b) <u>as this means still</u> O(n)!

O(n) - running time:

$$T(n) = 3n + 1$$
 $T(n) = 10^8 + n$

$$T(n) = 50 + 10^{-8} n$$
 $T(n) = 10^6 n + 1$

Remember that "Big-Oh" describes an "asymptotic behaviour" for large problem sizes

Example 1.13, p.17

Polynomial
$$P_k(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0$$
; $a_k > 0$, is $O(n^k) \Leftarrow P_k(n) \le (a_k + |a_{k-1}| + \ldots + |a_0|) n^k$; $n \ge 1$

<u>Do not write</u> $O(P_k(n))$ <u>as this means still</u> $O(n^k)$!

 $O(n^{\underline{k}})$ - running time:

- $T(n) = 3n^2 + 5n + 1$ is $O(n^2)$ <u>ls it also $O(n^3)$?</u>
- $T(n) = 10^{-8} n^3 + 10^8 n^2 + 30 \text{ is } O(n^3)$
- $T(n) = 10^{-8} n^8 + 1000n + 1 \text{ is } O(n^8)$

$$T(n) = P_k(n) \Rightarrow O(n^m), m \ge k; \ \Theta(n^k); \ \Omega(n^m); m \le k$$

Example 1.14, p.17

Exponential $g(n) = 2^{n+k}$ is $O(2^n)$: $2^{n+k} = 2^k \cdot 2^n$ for all nExponential $g(n) = m^{n+k}$ is $O(l^n)$, $l \ge m > 1$: $m^{n+k} \le l^{n+k} = l^k \cdot l^n$ for all n, k

A "brute-force" search for the best combination of n interdependent binary decisions by exhausting all the 2^n possible combinations has exponential time complexity! Therefore, <u>try to find a more efficient way of solving the decision problem</u> with $n \ge 20 \dots 30$

Example 1.15, p.17

• Logarithmic function $g(n) = \log_m n$ has the same rate of increase as $\log_2 n$ because

$$\log_m n = \log_m 2 \cdot \log_2 n$$
 for all $n, m > 0$

<u>Do not write</u> $O(\log_m n)$ <u>as this means still</u> $O(\log n)$!

You will find later that the most efficient search for data in an ordered array has logarithmic time complexity

