
Lecture 2 COMPSCI 220 - AP G Gimel'farb 1

Estimated Time to Sum Subarrays

• Ignore data initialisation

• “Brute-force” summing with two nested loops:
 T(n) = m(m +1) = n/2(n/2 + 1)
 = 0.25n2 + 0.5n
• For a large n, T(n) ≅ 0.25n2

– e.g., if n ≥10, the linear term 0.5n ≤ 16.7% of T(n)
– if n ≥ 500, the linear term 0.5n ≤ 0.4% of T(n)

Lecture 2 COMPSCI 220 - AP G Gimel'farb 2

Quadratic vs linear term

T(n) = 0.25n2 + 0.5n

0.2%5002500002505001000
0.4%2506250062750500
2.0%5025002550100
3.8%2562565050
16.7%5253010

0.5n0.25n2T(n)n

Lecture 2 COMPSCI 220 - AP G Gimel'farb 3

Quadratic Time to Sum Subarrays:
T(n)=0.25n2 + 0.5n

• Factor c = 0.25 is referred to as a “constant of
proportionality”

• An actual value of the factor does not effect the
behaviour of the algorithm for a large n:
– 10% increase in n → 20% increase in T(n)
– Double value of n → 4-fold increase in T(n):
 T(2n) = 4 T(n)

Lecture 2 COMPSCI 220 - AP G Gimel'farb 4

Running Time: Estimation Rules

• Running time is proportional to the most
significant term in T(n)

• Once a problem size becomes large, the most
significant term is that which has the largest
power of n

• This term increases faster than other terms
which reduce in significance

Lecture 2 COMPSCI 220 - AP G Gimel'farb 5

Running Time: Estimation Rules

• Constants of proportionality depend on the
compiler, language, computer, etc.
– It is useful to ignore the constants when analysing

algorithms.

• Constants of proportionality are reduced by using faster
hardware or minimising time spent on the “inner loop”

– But this would not effect behaviour of an algorithm
for a large problem!

Lecture 2 COMPSCI 220 - AP G Gimel'farb 6

Elementary Operations

• Basic arithmetic operations (+ ; – ; ∗ ; / ; %)

• Basic relational operators (==, !=, >, <, >=, <=)

• Basic Boolean operations (AND,OR,NOT)

• Branch operations, return, …

Input for problem domains (meaning of n):
Sorting: n items Graph / path: n vertices / edges
Image processing: n pixels Text processing: string length

Lecture 2 COMPSCI 220 - AP G Gimel'farb 7

Estimating Running Time

• Simplifying assumptions:
 all elementary statements / expressions take the

same amount of time to execute
• e.g., simple arithmetic assignments
• return

• Loops increase in time linearly as
k⋅Tbody of a loop

 where k is number of times the loop is executed

Lecture 2 COMPSCI 220 - AP G Gimel'farb 8

Estimating Running Time

• Conditional / switch statements like if {condition}
then {const time T1} else {const time T2} are
more complicated (one has to account for branching
frequencies: T = ftrueT1 + (1−ftrue)T2 ≤ max{T1, T2}

• Function calls:
Tfunction = Σ Tstatements in function

• Function composition:
T(f(g(n))) = T(g(n)) + T(f(n))

Lecture 2 COMPSCI 220 - AP G Gimel'farb 9

Estimating Running Time

• Function calls in more detail: T = Σ Tstatement i

 ... x.myMethod(5, ...);
 public void myMethod(int a, ...){
 statements 1, 2, … , N }
• Function composition in more detail: T(f(g(n)))
 Computation of x = g(n) → T(g(n))
 Computation of y = f(x) → T(f(n))

Lecture 2 COMPSCI 220 - AP G Gimel'farb 10

Example 1.6: Textbook, p.13

Logarithmic time due to an exponential change i =
k, k2, k3, …, km of the loop control in the range
1 ≤ i ≤ n:

 for i = k step i ← ik until n do
… {const # of elementary operations}
end for

 m iterations such that km−1 < n ≤ km ⇒
T(n) = c logk n

Lecture 2 COMPSCI 220 - AP G Gimel'farb 11

Example 1.7: Textbook, p.13

n log n running time of the conditional nested loops:
 m ← 2; for j ← 1 to n do
 if (j = m) then
 m ← 2m
 for i←1 to n do …{const # of operations}
 end for
 end if
 end for
The inner loop is executed k times for j = 2, 4, …, 2k;

k < log2n ≤ k + 1; in total: T(n) = kn = n logk n

Lecture 2 COMPSCI 220 - AP G Gimel'farb 12

Exercise 1.2.1: Textbook, p.14

Conditional nested loops: linear or quadratic running time?
m ← 1; for j ← 1 to n do
 if (j = m) then m ← m (n − 1)
 for i ←1 to n do …{const # of operations}
 end for
 end if
 end for
The inner loop is executed only twice, for j = 1 and j = n − 1;

in total: T(n)=2n linear running time

