

Estimated Time to Sum Subarrays

- Ignore data initialisation
- "Brute-force" summing with two nested loops: $T(n) = m(m+1) = \frac{n}{2}(\frac{n}{2} + 1)$ $= 0.25n^2 + 0.5n$
- For a large n, $T(n) \approx 0.25n^2$

- e.g., if $n \ge 10$, the linear term $0.5n \le 16.7\%$ of T(*n*)

- if $n \ge 500$, the linear term $0.5n \le 0.4\%$ of T(*n*)

Quadratic vs linear term

$T(n) = 0.25n^2 + 0.5n$				
n	T(n)	$0.25n^2$	0.5 <i>n</i>	
10	30	25	5	16.7%
50	650	625	25	3.8%
100	2550	2500	50	2.0%
500	62750	62500	250	0.4%
1000	250500	250000	500	0.2%

Quadratic Time to Sum Subarrays: $T(n)=0.25n^2+0.5n$

- Factor c = 0.25 is referred to as a "constant of proportionality"
- An actual value of the factor does not effect the behaviour of the algorithm for a large *n*:

- 10% increase in $n \rightarrow 20\%$ increase in T(n)

– Double value of $n \rightarrow 4$ -fold increase in T(n):

$$T(2n) = 4 T(n)$$

Running Time: Estimation Rules

- Running time is proportional to the most significant term in T(n)
- Once a problem size becomes large, the most significant term is that which has the largest power of *n*
- This term increases faster than other terms which reduce in significance

- Constants of proportionality depend on the compiler, language, computer, etc.
 - It is useful to ignore the constants when analysing algorithms.
- Constants of proportionality are reduced by using faster hardware or minimising time spent on the "inner loop"
 - But this would not effect behaviour of an algorithm for a large problem!

Elementary Operations

- Basic arithmetic operations (+ ; ; * ; / ; %)
- Basic relational operators (==, !=, >, <, >=, <=)
- Basic Boolean operations (AND, OR, NOT)
- Branch operations, return, ...

Input for problem domains (meaning of *n*):

Sorting: n itemsGraph / path: n vertices / edgesImage processing: n pixelsText processing: string length

Estimating Running Time

• Simplifying assumptions:

all elementary statements / expressions take the same amount of time to execute

- e.g., simple arithmetic assignments
- return
- Loops increase in time linearly as

 $k \cdot T_{\text{body of a loop}}$

where k is number of times the loop is executed

Estimating Running Time

- Conditional / switch statements like if {condition} then {const time T_1 } else {const time T_2 } are more complicated (one has to account for branching frequencies: $T = f_{true}T_1 + (1-f_{true})T_2 \le \max{T_1, T_2}$
- Function calls:

 $T_{\text{function}} = \sum T_{\text{statements in function}}$

• Function composition:

$$T(f(g(n))) = T(g(n)) + T(f(n))$$

Estimating Running Time

- Function calls in more detail: T = Σ T_{statement i}
 ... x.myMethod(5, ...);
 public void myMethod(int a, ...){
 statements 1, 2, ..., N }
- <u>Function composition</u> in more detail: T(f(g(n)))Computation of $x = g(n) \rightarrow T(g(n))$ Computation of $y = f(x) \rightarrow T(f(n))$

Example 1.6: Textbook, p.13

Logarithmic time due to an exponential change $i = k, k^2, k^3, ..., k^m$ of the loop control in the range $1 \le i \le n$: for i = k step $i \leftarrow ik$ until n do ... {const # of elementary operations} end for m iterations such that $k^{m-1} < n \le k^m \Rightarrow$ $T(n) = c \lceil \log_k n \rceil$

Example 1.7: Textbook, p.13

<u>*n* log *n* running time</u> of the conditional nested loops: $m \leftarrow 2$; for $j \leftarrow 1$ to n do if (j = m) then $m \leftarrow 2m$ for $i \leftarrow 1$ to n do ...{const # of operations} end for end if end for The inner loop is executed k times for $j = 2, 4, ..., 2^k$; $k < \log_2 n \le k + 1$; in total: $T(n) = kn = n \mid \log_k n \mid$

Exercise 1.2.1: Textbook, p.14

Conditional nested loops: linear or quadratic running time? $m \leftarrow 1$; for $j \leftarrow 1$ to n do if (j = m) then $m \leftarrow m (n - 1)$ for $i \leftarrow 1$ to n do ...{const # of operations} end for end if end for The inner loop is executed <u>only twice</u>, for j = 1 and j = n - 1; in total: $T(n)=2n \rightarrow$ linear running time

