

Relative growth: $g(n) = \frac{f(n)}{f(5)}$							
			Input size <i>n</i>				
Function $f(n)$		5	25	125	625		
Constant	1	1	1	1	1		
Logarithm	log ₅ n	1	2	3	4		
Linear	n	1	5	25	125		
"n log n"	$n \log_5 n$	1	10	75	500		
Quadratic	n^2	1	25 (5 ²)	625 (54)	15,625 (56)		
Cubic	<i>n</i> ³	1	125 (53)	15,625 (56)	1,953,125 (59)		
Exponential	2 ⁿ	1	2 ²⁰ ~10 ⁶	2 ¹²⁰ ~ 10 ³⁶	$2^{620} \approx 10^{187}$		
Lecture 3		CON	IPSCI 220 - AP G	Gimel'farb	2		

Big Omega $\Omega(...)$

• The function g(n) is $\Omega(f(n))$ iff there exists a positive real constant c and a positive integer n_0 such that $g(n) \ge cf(n)$ for all $n > n_0$ $\Omega(...)$ is opposite to O(...) and specifies an <u>asymptotic</u> lower bound: if g(n) is $\Omega(f(n))$ then f(n) is O(g(n)) **Example 1**: $5n^2$ is $\Omega(n) \Leftarrow 5n^2 \ge 5n$ for $n \ge 1$ **Example 2**: 0.01n is $\Omega(\log n) \Leftarrow 0.01n \ge 0.5\log_{10}n$ for $n \ge 100$

	Big Theta Θ()	
 The function positive reprint integer n₀ all n > n₀ 	on $g(n)$ is $\Theta(f(n))$ iff there exists al constants c_1 and c_2 and a p such that $c_1 f(n) \leq g(n) \leq c_2 j$	sts two positive f(n) for
$g(n)$ is Θ	$\psi(n)) \Rightarrow$	<pre>// ```````````````````````````````````</pre>
	g(n) is $O(f(n))$ AND $f(n)$ is $O(g(n))$	g(n)
Ex.: the san $\Rightarrow n \leq$	he rate of increase for $g(n) = n + 5n^{0.5}$ and $n + 5n^{0.5} \le 6n$ for $n \ge 1$	f(n) = n
Lecture 3	COMPSCI 220 - AP G Gimel'farb	7

