Introduction to Algorithm Analysis

Typical Complexity Curves
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“Big-Oh” O(...) : Formal Definition

Let f(n) and g(n) be nonnegative-valued functions defined
on nonnegative integers n

The function g(n) is O(f) (read: g(n) is Big Oh of f(n)) iff
there exists a positive real constant ¢ and a positive
integer n such that g(n) < cf(n) for all n > n,

— Notation “iff’ is an abbreviation of “if and only if’
— Example 1.9 (p.15): g(n) = 100log, ,n is O(n)
<=g(n)<nifn>238org(n)<0.3n if n> 1000
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“Big-Oh” O(...) : Informal Meaning

* If g(n) is O(f(n)), an algorithm with running time
g(n) runs asymptotically (i.e. for large »), at
most as fast, to within a constant factor, as an
algorithm with running time f{(r)

O(f(n)) specifies an asymptotic upper bound, i.e. g(n)
for large n may approach closer and closer to ¢f{n)
Notation g(n) = O(f(n)) means actually g(n)EO0(f(n)),

i.e. g(n) is a member of the set O(f(n)) of functions
increasing with the same or lesser rate if n — o
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Relative growth: g(n) =ﬂn)/f(5)

Input size n

Function f{n) 5 25 125 625
Constant 1 1 1 1 1
Logarithm logsn | 1 2 3 4
Linear n 1 5 25 125
“nlogn” nlogsn | 1 10 75 500
Quadratic n? 1|25(5%) | 625(5% 15,625 (5°)
Cubic n 1 [125(5%) | 15,625 (59 | 1,953,125 (5%)
Exponential 27 1| 220m106 | 21201036 2620 41 (187
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8(n) Is O(f(n)), or g(n) = O(f(n))
T); f(n)=n
g(n) is O(fin)) if: | / -
a constant ¢ >0 exists such « 4
that cfin) grows faster )
than g(n) for all n > n, 7, //({n) 03
To prove that some function |/~ n
g(n)is O(fin))y meansto T LT LT LT LT LT LT,
show for g and f such =
constants c and n,, exist
The constants ¢ and n, are  n>®,=238): em<( fm=n)
interdependent n>(n,=1000): gn)<( f(n)=03 n)
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Big Omega Q(...)

+ The function g(n) is Q(f(n)) iff there exists a
positive real constant ¢ and a positive integer n,
such that g(n) > ¢f(n) for all n > n,

Q(...) is opposite to O(...) and specifies an asymptotic
lower bound: if g(n) is Q(f(n)) then f(n) is O(g(n))
Example 1: 5n2 is Q(n) <= 5n%> Snforn > 1
Example 2: 0.017 is Q(log n) < 0.01n > 0.5log,
for n > 100
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Big Theta ©(...)

+ The function g(n) is ©(f(n)) iff there exists two
positive real constants ¢, and ¢, and a positive
integer n, such that ¢, f(n) = g(n) = c,f(n) for
alln > n,

g(n) is O(f(n)) =
g(n)is O(f(n)) AND f(n) is O(g(n))
EX.: the same rate of increase for g(n) = n + 5n°5 and f(n) = n
= n < n+5n%5<6nforn>1
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Example 1.12, p.17

Linear function g(n) = an + b, a > 0,is O(n)
To prove, we form a chain of inequalities:
gn)<an+b|<gn) <(a+|b|) nforaln>1

Do not write O(2#r) or O(an + b) as this means still O(»)!
O(n) - running time:
T(n)=3n+1 T(n) =108 +n
T(n)=50+10"%rn T(mn)=10n+1
Remember that “Big-Oh” describes an “asymptotic behaviour’
for large problem sizes
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Example 1.14, p.17

Exponential g(n) = 27 is O( 27): 27k =2k-2nforall n
Exponential g(n) =m"*is O(I"), Iz m> 1:
mitk< [tk =[k. [n forall n, k

A ‘“brute-force” search for the best combination of n
interdependent binary decisions by exhausting all the 27
possible combinations has exponential time complexity!
Therefore, try to find a more efficient way of solving
the decision problem with » = 20 ... 30
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Comparisons: Two Crucial Ideas

+ Exact running time function is unimportant since it
can be multiplied by an arbitrary positive constant.

+ Two functions are compared asymptotically, for
large n, and not near the origin
— If the constants ¢ involved are very large, then the
asymptotical behaviour is of no practical interest!
— To prove that g(n) is not O(f(n)), Q(f(n)), or O
(f(n)) we have to show that the desired constants do
not exist, i.e. lead to a contradiction
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Example 1.13, p.17

Polynomial P(n) = a, n* +a,_n*'+...+a,n+ay; a, > 0,
is O(n*) <= P(n) < (a, t|a,_{|+ ... +|ay|) n*; n>1

Do not write O(P,(n)) as this means still O(n*)!

O(nk) - running time:

e T(n) =3n% +5n+ 1is O(n?) Is it also O(n3)?

e T(n) = 10-8 n3 + 108 n? + 30 is O(n?)

« T(n) = 10-8 n8 + 1000n + 1 is O(n®)

I(n) = Pyn) = O(n™), m = k; ©(n*); Q(n™); m<k
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Example 1.15, p.17

+ Logarithmic function g(r) = log,, n has the same rate
of increase as log, n because

log,, n=1log, 2 - log, n forall n, m>0
Do not write O(log,, 1) as this means still O(log 7)!

You will find later that the most efficient search for data in
an ordered array has logarithmic time complexity
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