Introduction to Algorithm Analysis

Estimated Time to Sum Subarrays

* Ignore data initialisation
+ “Brute-force” summing with two nested loops:
I(n)=m@m+1)= "/,("/,+1)
=0.2572 +0.5n
+ Foralarge n, T(n) = 0.25n2
- e.g. ifn>10, the linear term 0.5n < 16.7% of T(n)
— ifn > 500, the linear term 0.57 < 0.4% of T(n)

Lecture 2 COMPSCI 220 - AP G Gimel'farb 1

COMPSCI 220

Quadratic vs linear term

T(n) = 0.25n%+ 0.5n
n T(n) | 0.2512 0.5n
10 30 25 5 16.7%
50 650 625 25 3.8%
100 2550 2500 50 2.0%
500 62750 | 62500 250 0.4%
1000 | 250500 | 250000 | 500 0.2%

Quadratic Time to Sum Subarrays:
T(n)=0.25n2 + 0.5n
+ Factor ¢ = 0.25 is referred to as a “constant of
proportionality”

+ An actual value of the factor does not effect the
behaviour of the algorithm for a large n:

—10% increase in n — 20% increase in 7(n)
— Double value of n — 4-fold increase in T(n):
T(2n) = 4 T(n)

Lecture 2 COMPSCI 220 - AP G Gimel'farb 3

Running Time: Estimation Rules

+ Constants of proportionality depend on the
compiler, language, computer, etc.
— It is useful to ignore the constants when analysing
algorithms.

+ Constants of proportionality are reduced by using faster
hardware or minimising time spent on the “inner loop”

— But this would not effect behaviour of an algorithm
for a large problem!

Lecture 2 COMPSCI 220 - AP G Gimel'farb 5

A/P Georgy Gimel'farb - Lecture 2

Lecture 2 COMPSCI 220 - AP G Gimel'farb 2 E
Running Time: Estimation Rules

* Running time is proportional to the most
significant term in 7(n)

+ Once a problem size becomes large, the most
significant term is that which has the largest
power of 7

+ This term increases faster than other terms
which reduce in significance

Lecture 2 COMPSCI 220 - AP G Gimel'farb 4 E

Elementary Operations

+ Basic arithmetic operations (+ ; —; *;/; %)

+ Basic relational operators (==, !=, >, <, >=, <=)

+ Basic Boolean operations (AND,OR,NOT)

+ Branch operations, return, ...
Input for problem domains (meaning of n):
Sorting: n items Graph / path: » vertices / edges
Image processing: » pixels Text processing: string length

Lecture 2 COMPSCI 220 - AP G Gimel'farb 6 E

Introduction to Algorithm Analysis

Estimating Running Time

+ Simplifying assumptions:
all elementary statements / expressions take the
same amount of time to execute
* e.g., simple arithmetic assignments
* return

+ Loops increase in time linearly as
ke Tbody of a loop
where k is number of times the loop is executed

Lecture 2 COMPSCI 220 - AP G Gimel'farb

' E

Estimating Running Time

* Function calls in more detail: 7= X T,

... X.myMethod(5, ...);
public void myMethod(int a, ...){
statements 1,2, ... N }
+ Function composition in more detail: 7(f(g(n)))
Computation of x = g(n) — T(g(n))
Computation of y = fix) — T(f(n))

tatement 7

Lecture 2 COMPSCI 220 - AP G Gimel'farb

’ E

Example 1.7: Textbook, p.13

n_log n running time of the conditional nested loops:
m < 2;for j< 1 tondo
if (j =m) then
m<2m
for i<—1 to n do ...{const # of operations}
end for
end if
end for
The inner loop is executed k times forj =2, 4, ..., 2
k<log,n < k+ 1;intotal:|T(n) = kn = n | log, n |

Lecture 2 COMPSCI 220 - AP G Gimel'farb

! E

A/P Georgy Gimel'farb - Lecture 2

COMPSCI 220

Estimating Running Time

+ Conditional / switch statements like if {condition}
then {const time T} else {const time T,} are
more complicated (one has to account for branching
frequencies: T = f;.,. T} + (1=f10e) To < max{T,, T,}

* Function calls:

T

function
+ Function composition:

T(flg(n)) = T(g(m) + T(An))

Lecture 2 COMPSCI 220 - AP G Gimel'farb 8 E

=2T

statements in function

Example 1.6: Textbook, p.13

Logarithmic time due to an exponential change i =
k, k2, k3, ..., k™ of the loop control in the range
1<i<m
for i = k step i < ik until n do
... {const # of elementary operations}
end for

m iterations such that &' < n < k" =
T(n)= c[log, n]

Lecture 2 COMPSCI 220 - AP G Gimel'farb 10 E

Exercise 1.2.1: Textbook, p.14

Conditional nested loops: linear or quadratic running time?
m<1; for j< 1 tondo
if (j=m) thenm<m@m-1)
for i <1 to n do ...{const # of operations}
end for
end if
end for
The inner loop is executed only twice, forj =1andj =n - 1;
in total: 7(n)=2n -> linear running time

Lecture 2 COMPSCI 220 - AP G Gimel'farb 12 E

