
- Introduction to Algorithm Analysis COMPSCI 220

- A/P Georgy Gimel'farb - Lecture 1 1

Lecture 1 COMPSCI 220 - AP G Gimel'farb 1

Some Informal Definitions

• algorithm - a system of uniquely determined rules
that specify successive steps in solving a problem

• program - a clearly specified series of computer
instructions implementing the algorithm

• elementary operation - a computer instruction
executed in a single time unit (computing step)

• running (computing) time of an algorithm - a number
of its computing steps (elementary operations)

Lecture 1 COMPSCI 220 - AP G Gimel'farb 2

Efficiency of Algorithms: How to
compare algorithms / programs

• by domain of definition – what inputs are legal?
• by correctness – is output correct for each legal

input? (in fact, you need a formal proof!)
• by basic resources – maximum or average

requirements:
– computing time

– memory space

Lecture 1 COMPSCI 220 - AP G Gimel'farb 3

Example 1:

Algorithm linear sum (input: array a[n])
 begin s ← 0
 for i ← 0 step i ← i + 1 until n − 1 do
 s ← s + a[i] end for
 return s
 end
To sum elements of an array a[n], elementary fetch–add

operations are repeated n times ⇒
 Running time T(n) = cn is linear in n

!
"

=
=

1

0
][

n

i
ias

Lecture 1 COMPSCI 220 - AP G Gimel'farb 4

Example 2: GCD

• The greatest common divisor, k = GCD(n, m)
is the greatest positive integer such that it divides
both two positive integers m and n

• A “brute-force” linear solution: to exhaust all
integers from 1 to the minimum of m and n

• Is it practicable to use such an algorithm to find
GCD(3 787 776 332, 3 555 684 776) or even
GCD(9245,7515)?

Lecture 1 COMPSCI 220 - AP G Gimel'farb 5

Euclid’s GCD Algorithm

• Euclid’s analysis: if k divides both m and n,
then it divides their difference (n − m if n > m):

GCD(n, m) = GCD(n−m, m)
• k divides every difference when the subtraction

is repeated up to λ times until n − λm < m:
GCD(n, m) = GCD(n mod m, m)

 where n mod m, or n modulo m is the remainder of
division of n by m (in Java/C: n%m, e.g. 13%5 = 3)

Lecture 1 COMPSCI 220 - AP G Gimel'farb 6

Euclid’s GCD ≈clog(n+m) time

GCD(9245,7515) = 5

8 steps vs 7515 steps of the brute-force algorithm!

10 mod 5 = 0 ⇒GCD=545 mod 10 = 5

55 mod 45 = 10540 mod 55 = 45

595 mod 540 = 551730 mod 595 = 540

7515 mod 1730 = 5959245 mod 7515 = 1730

- Introduction to Algorithm Analysis COMPSCI 220

- A/P Georgy Gimel'farb - Lecture 1 2

Lecture 1 COMPSCI 220 - AP G Gimel'farb 7

Example 3: Sums of Subarrays

Given an array (a[i]: i = 0,1, …, n – 1) of size n,
compute n − m + 1 sums:

 of all contiguous subarrays of size m
• Brute force computation: cm operations per

subarray; in total: cm(n − m + 1) operations
• Time is linear if m is fixed and quadratic if m is

growing with n, such as m = 0.5n

!
"

=
"=+=

1

0
,,0];[][

m

k
mnjkjajs K

Lecture 1 COMPSCI 220 - AP G Gimel'farb 8

Quadratic time (2 nested loops)

Algorithm slowsum (input: array a[2m])
 begin array s[m + 1]
 for j ← 0 to m do
 s[j] ← 0
 for k ← 0 to m−1 do
 s[j] ← s[j] + a[k + j]
 end for
 end for
 return s
 end)1(1

22
)(22

Tnnc
nn

cnT =!"#$
%

&
'
(

)
+=

Lecture 1 COMPSCI 220 - AP G Gimel'farb 9

Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

Linear time T(n) = c(m + 2m) = 1.5cn after excluding
reiterated computations:

][]1[...]1[]1[

]1[...]1[][][

mjamjajajs

mjajajajs

++!++++=+

!+++++=

][][][]1[jamjajsjs !++=+

Lecture 1 COMPSCI 220 - AP G Gimel'farb 10

Linear time (2 simple loops)
Algorithm fastsum (input: array a[2m])
 begin array s[m + 1]
 s[0] ← 0
 for k ← 0 to m−1 do s[0] ← s[0] + a[k]
 end for
 for j ← 1 to m do
 s[j] ← s[j−1] + a[j + m − 1] − a[j − 1]
 end for
 return s
 end

Lecture 1 COMPSCI 220 - AP G Gimel'farb 11

Computing Time for T(1)=1µs

1.5 sec1.5 msecT(n)Efficient (linear) algorithm

> 23 days2 secT(n)Brute-force (quadratic)
algorithm

1,000,000 /
1,000,001

1,000 /
1,001

m /
m + 1

Size / number of subarrays

2,000,0002,000nArray size

Lecture 1 COMPSCI 220 - AP G Gimel'farb 12

Exercises: Textbook, p.12

1.1.1: Quadratic algorithm with processing time T(n)=cn2 spends 500µ
sec on 10 data items. What time will be spent on 1000 data items?
Solution: T(10) = c·102 = 500 → c = 500/100 = 5 µsec/item
 → T(1000) = 5·10002 = 5·106 µsec or T(1000)= 5 sec

1.1.2: Algorithms A and B use TA(n) = cAnlog2n and TB(n) = cBn2

elementary operations for a problem of size n. Find the fastest
algorithm for processing n = 220 data items if A and B spend 10 and 1
operations, respectively, to process 210=1024 items.

 Solution: TA(210) = 10 → cA = 10/(10·210) = 2−10;
 TB(210) = 1 → cB = 1/220 = 2−20

 → TA(220) = 2−10·20 · 220 = 20·210 << TB(220) = 2−20 · 240 = 220

→ Algorithm A is the fastest for n = 220

