
Chapter 4

CONTEXT-FREE GRAMMARS AND
PARSING

In the previous chapters, two equivalent ways of describing patterns were discussed. One
was graph-theoretic, using the labels on paths in a kind of graph called an “automaton”.
The other was algebraic, using the regular expression notation. In this section, we look
at a third, more powerful way of describing patterns using a recursive definition called a
“context-free grammar”.

Context-free grammars are important for the specification of programming languages.
They provide a succinct notation for describing the syntax of typical programming lan-
guage. Further, there are mechanical ways of turning a grammar into a “parser,” one of
the key components for a compiler for the language.

4.1 A Grammar for Arithmetic Expressions

Arithmetic expressions can be defined naturally with a recursive definition. We will con-
sider arithmetic expressions that involve numbers, the four binary operators+,�, � and=,
and parentheses. The usual definition of such expression is an induction of the following
form:

BASIS A number is an expression

INDUCTION If E1 andE2 are expressions, then each of the following is also an expres-
sion:

1. (E1). That is, we may place parentheses around an expression to get a new
expression

2. E1 + E2. That is, two expressions connected by a plus sign is also an expres-
sion. The following three rules cover connections using the other operators.

193

194 COMPSCI.220FT

3. E1 � E2.

4. E1 � E2.

5. E1=E2.

Grammars allow us to write down such rules succinctly and with a precise meaning. Here
is a grammar for the definition of arithmetic expressions above.

hExpressioni ! number (4.1)

hExpressioni ! (hExpressioni) (4.2)

hExpressioni ! hExpressioni+ hExpressioni (4.3)

hExpressioni ! hExpressioni � hExpressioni (4.4)

hExpressioni ! hExpressioni � hExpressioni (4.5)

hExpressioni ! hExpressioni=hExpressioni (4.6)

The symbolhExpressioni is called asyntactic category; it stands for any string in the
language of arithmetic expressions. The symbol! means “can be composed of”. For
example, rule 4.2 states that an expression can be composed of a left parenthesis followed
by any string that is an expression followed by a right parenthesis. Rule 4.1 is different
because the symbolnumber on the right of the arrow is not intended to be a literal string,
but a placeholder for any string that can be interpreted as a number.

There are three kinds of symbols that can appear in grammars. The first are “meta-
symbols” that play a special role and do not stand for themselves. The! symbol is
a meta-symbol, which is used to separate the syntactic category being defined from the
strings from which it can be composed. The second kind of symbol is a syntactic category,
which represents a set of strings being defined. The third kind of symbol is aterminal.
Terminals can be characters, such as+ or(, or they can be abstract symbols such asnum-
ber, that stand for one or more strings that we may wish to define at a later time.

A number could be defined using a regular expression, as in

digit = [0-9]

number = digit+

The same idea can be expressed in grammatical notation, as in

hDigiti ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

hNumberi ! hDigiti

hNumberi ! hNumberihDigiti

COMPSCI.220FT 195

The above example also introduces the meta-symbolj, which abbreviates the ten produc-
tions

hDigiti ! 0

hDigiti ! 1

: : :

hDigiti ! 9

We could similarly have combined the two productions forhNumberi into one line.

This notation for describing grammars is sometimes referred to asBackus-Naur Form or
BNF for short, after J. Backus and P. Naur who used similar notations to describe the
grammars of Fortran and Algol 60 respectively.

4.2 A Grammar for Java Statements

We can describe the structure of Java control flow constructs using a grammar. The syn-
tactic categoryhStatementi will be used to describe Java statements.

The first production describes awhile-loop. That is, if we have a statement to serve as
the body of the loop, we can precede it with the keywordwhile, an open parenthesis, a
condition, and a close parenthesis.

hStatementi ! while(condition) hStatementi (4.1)

Another way to build statements is using anif-construct. These constructs take two forms,
depending on whether or not there is anelse-part.

hStatementi ! if(condition) hStatementi (4.2)

hStatementi ! if(condition) hStatementi else hStatementi (4.3)

Other constructs such asfor-loops andswitch statements are similar in spirit, and are left
as exercises.

However, one other important formation rule is the block. A block uses the delimiters{
and} around a list of zero or more statements. To describe blocks, we need an auxiliary
syntactic category, which we callhStmtListi. The productions forhStmtListi are

hStmtListi ! � (4.4)

hStmtListi ! hStmtListi hStatementi (4.5)

196 COMPSCI.220FT

The first production is an anempty production; that is, ahStmtListi can be the empty
string.

We can now define statements that are blocks as a statement list enclosed in curly braces:

hStatementi ! f hStmtListi g (4.6)

Finally, a Java statement can be an expression or a declaration followed by a semicolon.
The grammar for Java expressions and declarations is left as an exercise.

hStatementi ! hDeclarationi ; (4.7)

hStatementi ! hExpressioni ; (4.8)

4.2.1 Exercises

1. Give a grammar to specify the syntactic categoryhIdenti�eri of Java identifiers.

2. Add productions forhStatementi to includefor-loops,do-loops, andswitch-state-
ments.

3. Extend the grammar of arithmetic expressions to include identifiers, method calls,
and array indexes.

4. Give a grammar for Java expressions. Include assignment statements, method calls,
new, throw, case-labels,break, continueand the conditional expression? :.

5. Give a grammar for Java declarations.

4.3 Parse Trees

A given string belongs to the language generated by a grammar if it can be formed by
repeated application of the productions. The grammar of arithmetic expressions below is
used to illustrate this process.

hE i ! (hE i) j hE i+ hE i j hE i � hE i j hE i � hE i j hE i=hE i j hN i

hN i ! hN ihDi j hDi

hDi ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

COMPSCI.220FT 197

The productions involved in generating the string3*(2+14) are as follows. One pro-
duction is applied on each line, with the underlined syntactic category being expanded on
the following line.

hE i ! hE i � hE i

! hN i � hE i

! hDi � hE i

! 3 � hE i

! 3 � (hE i)

! 3 � (hE i+ hE i)

! 3 � (hN i+ hE i)

! 3 � (hDi+ hE i)

! 3 � (2 + hE i)

! 3 � (2 + hN i)

! 3 � (2 + hN ihDi)

! 3 � (2 + hDihDi)

! 3 � (2 + 1hDi)

! 3 � (2 + 14)

A parse tree is a concise representation of these productions:

198 COMPSCI.220FT

hEi

hEi

hNi

hDi

3

* hEi

(hEi

hEi

hNi

hDi

2

+ hEi

hNi

hNi

hDi

1

hDi

4

)

Every interior nodev in a parse tree represents the application of a production. I.e., there
must be some production such that

1. The syntactic category labellingv is the head of the production, and

2. The labels of the children ofv, from the left, form the body of the production.

In the example above, the root and its children represent the production

hE i ! hE i � hE i

4.4 Ambiguity and the Design of Grammars

Consider the expression1� 2+3. It has two parse trees, depending on whether we group
operators from the left or from the right.

COMPSCI.220FT 199

hEi

hEi

hEi

hNi

hDi

1

� hEi

hNi

hDi

2

+ hEi

hNi

hDi

3

hEi

hEi

hNi

hDi

1

� hEi

hEi

hNi

hDi

2

+ hEi

hNi

hDi

3

(a) Correct parse tree (b) Incorrect parse tree

This ambiguity is related to theassociativity of operators. Conventionally, a sequence of
expressions combined with the operators+ and- is evaluated left-to-right, so that1-2+3
is equivalent to(1-2)+3.

Another form of ambiguity arises with operators of differentprecedence. Convention
has it that multiplication and divisions are done before additions and subtractions, so that
1+2*3 is equivalent to1+(2*3).

Sometimes ambiguity makes no difference. All the parse trees for the expression1+2+3
+4 are equivalent for the purposes of evaluating the sum. However, this is not true in
general.

Aside: Of course, fully parenthesizing expressions obviates the need for conventions
regarding associativity and precedence, as does adopting an unambiguous notation such
as reverse polish. The language Lisp adopts the former approach, and the Forth group of
languages (a group that includes Postscript) adopt the latter.

4.5 An Unambiguous Grammar for Expressions

It is possible to construct an unambiguous grammar for arithmetic expressions. The
“trick” is to define three syntactic categories, with the following intuitive meanings:

200 COMPSCI.220FT

1. hFactori generates expressions that cannot be “pulled apart,” that is, a factor is
either a single operand or any parenthesized expression.

2. hTermi generates a product or quotient of factors. A single factor is a term, and thus
is a sequence of factors separated by the operators* or /. For example,12*2/5
is a term.

3. hExpressioni generates a sum or difference of one or more terms. A single term is
an expression, and thus is a sequence of terms separated by the operators+ or -.
Examples of expressions are12, 12/3*45 and12+3*45-6.

The grammar is given below, using the shorthandshE i for hExpressioni, etc.

hE i ! hE i+ hT i j hE i � hT i j hT i (4.1)

hT i ! hT i � hF i j hT i=hF i j hF i (4.2)

hF i ! (hE i) j hN i (4.3)

hN i ! hN ihDi j hDi (4.4)

hDi ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 (4.5)

To see how the grammar works, consider how the expression1-2+3 can be parsed. The
original, ambiguous grammar had the option of choosing for the first production either
hE i ! hE i � hE i or hE i ! hE i + hE i. The former parses1 and2+3 as expressions,
while the latter parses1-2 and3 as expressions.

Our new grammar makes it clear that thehE i ! hE i � hT i production cannot be used,
since2+3 cannot be parsed as a term. The only option left is to use the production
hE i ! hE i+ hT i, taking3 as thehT i.

Note how the causes of ambiguity, associativity and precedence, are resolved.

associativity A production of the formhE i ! hE i�hT i generates a left-associative ex-
pression. Changing this tohE i ! hT i � hE i makes the operator right-associative,
so that1� 2� 3 is parsed as1� (2� 3).

To make a non-associative expression (i.e., one in whicha� b� c is not valid), use
a production of the formhE i ! hT i � hT i

precedence The distinction among expressions, terms and factors enforces the correct
grouping of operators at different levels of precedence. For example, the expression
1-2*3 has only one parse tree, which groups the subexpression2*3 first.

COMPSCI.220FT 201

4.5.1 Exercises

1. Using the unambiguous grammar for arithmetic expressions, give the unique parse
tree for the following expressions:

(a) (1 + 2)=3

(b) 1 � 2� 3

(c) (1 + 2) � (3 + 4)

2. Extend the unambiguous grammar to include an exponentiation operator,ˆ, which
is at a higher level of precedence than* and/. Do this by introducing a new syn-
tactic categoryprimary to be an operand or parenthesized expression, and re-define
a factor to be one or more primaries connected by the exponentiation operator.
Note that exponentiation groups from the right, not the left, so that2ˆ3ˆ4 means
2ˆ(3ˆ4). How do we force grouping from the right among primaries?

3. Extend the unambiguous grammar to allow the comparison operators=, <=, etc.,
which are all at the same level of precedence. That precedence is below that of+ and
-, so that1+2<3 is equivalent to(1+2)<3. Note that the comparison operators
arenon-associative; that is,1<2<3 is not a legal expression.

4. Extend the unambiguous grammar to include the unary minus sign. This opera-
tor is at a higher precedence to any other operator, so that-2*-3 is grouped as
(-2)*(-3).

5. Extend the unambiguous grammar to include the logical operators&&, || and!.
Give || a lower precedence to&&, and make them both lower precedence to the
comparison operators=, <=, etc.. Thus,1<2&&3>4||1=4 parses as

((1<2)&&(3>4))||(1=4)

4.6 Constructing Parse Trees

Grammars are similar to regular expressions in that both notations describe languages but
do not give directly an algorithm for determining whether a string is in the language be-
ing defined. For regular expressions, we have seen how to convert a regular expression
into a nondeterministic finite automaton and then to a deterministic one; the latter can be
implemented directly, as a program.

There is a somewhat analogous process for grammars. However, grammars are a more ex-
pressive notation than regular expressions, and we cannot, in general, convert a grammar
into a deterministic finite automaton. However, it is often possible to convert a grammar

202 COMPSCI.220FT

to a program that, like an automaton, reads the input from beginning to end and judges
whether the input string is in the language of the grammar. The most important such tech-
nique, called “LR parsing,” is beyond the scope of this paper.

Instead, we will look at a simpler, but less powerful parsing technique called “recursive
descent,” which uses a collection of mutually recursive functions, each corresponding to
one of the syntactic categories of the grammar.

We will build a recursive descent parser for a simple grammar of balanced parentheses,
given below.

hBi ! (4.1)

hBi ! (hBi) hBi (4.2)

Production 4.1 states that an empty string is balanced.

Production 4.2 states that one way to find a string of balanced parentheses is to fulfill the
following four goals in order:

1. Find the character(, then

2. Find a string of balanced parentheses, then

3. Find the character), and finally

4. Find another string of balanced parentheses.

An input cursor keeps track of the next character in the input stream. We define a method
peek to return this character. The end of the input is marked by a specialendmarker,
which indicates that the entire string has been read. A methodnext advances to the next
input character. If the input is a string,s, we can use an integer input cursor,pos, and
define these methods as follows:

void next() { pos++; }

char peek() {
return pos < s.length() ? s.charAt(pos) : (char)0;

}

It is useful to define a methodcheck to test whether the next character matches a given
terminal.

void check(char c) throws ParseError {
if(peek() != c)

COMPSCI.220FT 203

throw new ParseError(s, pos, "Expected ’" + c + "’");
next();

}

The result returned by the parser is a tree, which requires a constructor for each production
in the grammar. The complete source code can be found on the COMPSCI 220FT WWW
page.

Tree parseB() throws ParseError {
if(peek() == ’(’) {
next();
Tree b1 = parseB();
check(’)’);
Tree b2 = parseB();
return new Tree("B -> (B) B", b1, b2);

} else
return new Tree("B -> ");

}

4.6.1 Limitations of recursive descent

Recursive descent can be applied to many grammars, but not to all. This can be observed
with the unambiguous grammar for arithmetic expressions. Naively coding the produc-
tions for this grammar as mutually recursive functions will result in an infinite recursion
on each of the left-recursive rules. Furthermore, even if a grammar does not have left-
recursive rules, the recursive descent method may be unsuitable. The basic requirement
is that, for each syntactic categoryhS i that has more than one production, we need to
be able to select the correct production forhS i by looking at only the next terminal (the
lookahead symbol).

It is possible to contort the unambiguous grammar for arithmetic expressions into a form
that allows it to be parsed using recursive descent, but the process requires introducing
a large number of non-intuitive syntactic categories. Faced with such a grammar, the
correct course of action is invariably to use a more powerful “bottom up” parsing method,
such as LR-parsing. However, such methods are beyond the scope of this paper.

4.6.2 Exercises

1. Show the sequence of method calls made byparseB on the inputs

(a) (())

(b) (()())

204 COMPSCI.220FT

(c) ())(

2. The following grammar defines non-empty lists, which are elements separated by
commas and surrounded by parentheses. An element can be either an atom or a
list structure. Here,hE i stands for element,hLi for list, andhT i for “tail,” that is,
either a closing), or pairs of commas and elements ended by).

Write a recursive descent parser for this grammar.

hLi ! (hE i hT i (4.1)

hT i ! ; hE i hT i (4.2)

hT i !) (4.3)

hE i ! hLi (4.4)

hE i ! atom (4.5)

3. (*) Write a recursive descent parser for the grammar of Java statements given in
section 4.2. Start by writing atokeniser that recognises Java reserved words, iden-
tifiers, number, string and character constants, and symbols (parentheses, braces,
etc.). Define a suitableTree class to return the parse tree.

4.7 Tokenizing the Input Stream

Keen observers may have noticed that none of the grammars given in these notes are able
to cope with the presence of white space or comments in the input. For example, the
parser for balanced parentheses willfail on the input string"()" (try it!). Re-writing
the grammar to permit white space and comments results in not only a more complicated
grammar but parse trees that contain a potentially large number of uninteresting nodes.

To avoid these problems, it is usual totokenize the input to the parser, using a finite au-
tomaton. A finite automaton can be used to identify substrings in the input that are of
interest to the parser, and return a code (usually a small integer) for the token type. Token
types typically include “integer constant”, “identifier”, “open parenthesis”, etc. The ac-
tual token can be placed by the automaton in temporary storage for the parser to retrieve
when building the parse tree.

For example, given the inputfor(i = 0; i < 100; i++), the finite automaton
might return a sequence of codes “reserved wordfor”, “open parenthesis”, “identifier”,
“equals”, “integer constant”, “semicolon”, etc.

COMPSCI.220FT 205

Finite automaton are powerful enough to be able to distinguish between white space and
comments that appears in strings (and must therefore be preserved) and white space and
comments appearing elsewhere (which it can ignore).

206 COMPSCI.220FT

