Binary Search Trees

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures
1. Properties of Binary Search Trees
2. Basic BST operations
3. The worst-case time complexity of BST operations
4. The average-case time complexity of BST operations
5. Self-balancing binary and multiway search trees
6. Self-balancing BSTs: AVL trees
7. Self-balancing BSTs: Red-black trees
8. Balanced B-trees for external search
Binary Search Tree: Left-Right Ordering of Keys

Left-to-right numerical ordering in a BST: for every node i,

- the values of all the keys $k_{\text{left}:i}$ in the left subtree are smaller than the key k_i in i and

- the values of all the keys $k_{\text{right}:i}$ in the right subtree are larger than the key k_i in i: $\{k_{\text{left}:i}\} \ni l < k_i < r \in \{k_{\text{right}:i}\}$

Compare to the bottom-up ordering in a heap where the key k_i of every parent node i is greater than or equal to the keys k_l and k_r in the left and right child node l and r, respectively: $k_i \geq k_l$ and $k_i \geq k_r$.
Binary Search Tree: Left-Right Ordering of Keys

BST

Non-BST:
Key "2" cannot be in the right subtree of key "3".

Non-BST:
Keys "11" and "12" cannot be in the left subtree of key "10".
Basic BST Operations

BST is an explicit *data structure* implementing the table ADT.

- BST are more complex than heaps: any node may be removed, not only a root or leaves.
- The only practical constraint: no duplicate keys (attach them all to a single node).

Basic operations:

- **find** a given search key or detect that it is absent in the BST.
- **insert** a node with a given key to the BST if it is not found.
- **findMin**: find the minimum key.
- **findMax**: find the maximum key.
- **remove** a node with a given key and restore the BST if necessary.
BST Operations **Find / Insert a Node**

find: a successful binary search.

insert: creating a new node at the point where an unsuccessful search stops.
BST Operations: FindMin / FindMax

Extremely simple: starting at the root, branch repeatedly left (findMin) or right (findMax) as long as a corresponding child exists.

- The root of the tree plays a role of the pivot in quicksort and quickselect.
- As in quicksort, the recursive traversal of the tree can sort the items:
 1. First visit the left subtree;
 2. Then visit the root, and
 3. Then visit the right subtree.

$O(\log n)$ average-case and $O(n)$ worst-case running time for find, insert, findMin, and findMax operations, as well as for selecting a single item (just as in quickselect).
BST Operation: **Remove a Node**

The most complex because the tree may be disconnected.

- Reattachment must retain the ordering condition.
- Reattachment should not needlessly increase the tree height.

Standard method of removing a node i with c children:

<table>
<thead>
<tr>
<th>c</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Simply remove the leaf i.</td>
</tr>
<tr>
<td>1</td>
<td>Remove the node i after linking its child to its parent node.</td>
</tr>
<tr>
<td>2</td>
<td>Swap the node i with the node j having the smallest key k_j in the right subtree of the node i. After swapping, remove the node i (as now it has at most one right child).</td>
</tr>
</tbody>
</table>

In spite of its asymmetry, this method cannot be really improved.
BST Operation: **Remove a Node**

Remove 10 ⇒ Replace 10 (swap with 12 and delete)

Minimum key in the right subtree
Lemma 3.11: The search, retrieval, update, insert, and remove operations in a BST all take time in $O(h)$ in the worst case, where h is the height of the tree.

Proof: The running time $T(n)$ of these operations is proportional to the number of nodes ν visited.

- **Find / insert:** $\nu = 1 + \langle\text{the depth of the node}\rangle$.
- **Remove:** $\langle\text{the depth + at most the height of the node}\rangle$.
- **In each case** $T(n) = O(h)$.

For a well-balanced BST, $T(n) \in O(\log n)$ (logarithmic time).

In the worst case $T(n) \in \Theta(n)$ (linear time) because insertions and deletions may heavily destroy the balance.
Analysing BST: The Worst-case Time Complexity

BSTs of height $h \approx \log n$

BSTs of height $h \approx n$
Analysing BST: The Average-case Time Complexity

More balanced trees are more frequent than unbalanced ones.

Definition 3.12: The total internal path length, $S_\tau(n)$, of a binary tree τ is the sum of the depths of all its nodes.

Depth 0: $S_\tau(8) = 0 + 1 + 1 + 2 + 2 + 3 + 3 + 3 = 15$

- Average complexity of a successful search in τ: the average node depth, $\frac{1}{n}S_\tau(n)$, e.g. $\frac{1}{8}S_\tau(8) = \frac{15}{8} = 1.875$ in this example.
- Average-case complexity of searching:
 - Averaging $S_\tau(n)$ for all the trees of size n, i.e. for all possible $n!$ insertion orders, occurring with equal probability, $\frac{1}{n!}$.
The $\Theta(\log n)$ Average-case BST Operations

Let $S(n)$ be the average of the total internal path length, $S_\tau(n)$, over all BST τ created from an empty tree by sequences of n random insertions, each sequence considered as equiprobable.

Lemma 3.13: The expected time for successful and unsuccessful search (update, retrieval, insertion, and deletion) in such BST is $\Theta(\log n)$.

Proof: It should be proven that $S(n) \in \Theta(n \log n)$.

- Obviously, $S(1) = 0$.
- Any n-node tree, $n > 1$, contains a left subtree with i nodes, a root at height 0, and a right subtree with $n - i - 1$ nodes; $0 \leq i \leq n - 1$.
- For a fixed i, $S(n) = (n - 1) + S(i) + S(n - i - 1)$, as the root adds 1 to the path length of each other node.
The $\Theta(\log n)$ Average-case BST Operations

Proof of Lemma 3.13 (continued):

- After summing these recurrences for $0 \leq i \leq n - 1$ and averaging, just the same recurrence as for the average-case quicksort analysis is obtained:

 $$S(n) = (n - 1) + \frac{2}{n} \sum_{i=0}^{n-1} S(i)$$

- Therefore, $S(n) \in \Theta(n \log n)$, and the expected depth of a node is $\frac{1}{n} S(n) \in \Theta(\log n)$.

- Thus, the average-case search, update, retrieval and insertion time is in $\Theta(\log n)$.

- It is possible to prove (but in a more complicate way) that the average-case deletion time is also in $\Theta(\log n)$.

The BST allow for a special balancing, which prevents the tree height from growing too much, i.e. avoids the worst cases with linear time complexity $\Theta(n)$.

□
Self-balanced Search Trees

Balancing ensures that the total internal path lengths of the trees are close to the optimal value of $n \log n$.

- The average-case and the worst-case complexity of operations is $O(\log n)$ due to the resulting balanced structure.
- But the insertion and removal operations take longer time on the average than for the standard binary search trees.

Balanced BST:

Balanced multiway search trees:

- B-trees (1972: R. Bayer and E. McCreight).
Self-balancing BSTs: AVL Trees

Complete binary trees have a too rigid balance condition to be maintained when new nodes are inserted.

Definition 3.14: An AVL tree is a BST with the following additional balance property:

- for any node in the tree, the height of the left and right subtrees can differ by at most 1.

The height of an empty subtree is -1.

Advantages of the AVL balance property:

- Guaranteed height $\Theta(\log n)$ for an AVL tree.
- Less restrictive than requiring the tree to be complete.
- Efficient ways for restoring the balance if necessary.
Lemma 3.15: The height of an AVL tree with n nodes is $\Theta(\log n)$.

Proof: Due to the possibly different heights of subtrees, an AVL tree of height h may contain fewer than $2^{h+1} - 1$ nodes of the complete tree.

- Let S_h be the size of the smallest AVL tree of height h.
- $S_0 = 1$ (the root only) and $S_1 = 2$ (the root and one child).
- The smallest AVL tree of height h has the smallest subtrees of height $h - 1$ and $h - 2$ by the balance property, so that

$$S_h = S_{h-1} + S_{h-2} + 1 = F_{h+3} - 1$$

where F_i is the i^{th} Fibonacci number (recall Lecture 6).
Self-balancing BSTs: AVL Trees (Proof of Lemma 3.15 – cont.)

That $S_h = F_{h+3} - 1$ is easily proven by induction:

- **Base case:** $S_0 = F_3 - 1 = 1$ and $S_1 = F_4 - 1 = 2$.

- **Hypothesis:** Let $S_i = F_{i+3} - 1$ and $S_{i-1} = F_{i+2} - 1$.

- **Inductive step:** Then
 $$S_{i+1} = S_i + S_{i-1} - 1 = F_{i+3} - 1 + F_{i+2} - 1 + 1 = F_{i+4} - 1$$

Therefore, for each AVL tree of height h and with n nodes:

$$n \geq S_h \approx \frac{\varphi^{h+3}}{\sqrt{5}} - 1 \text{ where } \varphi \approx 1.618,$$

so that its height $h \leq 1.444 \lg (n + 1) - 1.33$.

- The worst-case height is at most 44% more than the minimum height for binary trees.

- The average-case height of an AVL tree is provably close to $\lg n$.

□
Self-balancing BSTs: AVL Trees

Rotation to restore the balance after BST insertions and deletions:

If there is a subtree of large height below the node a, the right rotation will decrease the overall tree height.

- All self-balancing binary search trees use the idea of rotation.
- Rotations are mutually inverse and change the tree only locally.
- Balancing of AVL trees requires extra memory and heavy computations.
- More relaxed efficient BSTs, e.g., red-black trees, are used more often in practice.
Self-balancing BSTs: Red-black Trees

Definition 3.17: A red-black tree is a BST such that

- Every node is coloured either red or black.
- Every non-leaf node has two children.
- The root is black.
- All children of a red node must be black.
- Every path from the root to a leaf must contain the same number of black nodes.

Theorem 3.18: If every path from the root to a leaf contains b black nodes, then the tree contains at least $2^b - 1$ black nodes.
Proof of Theorem 3.18:

- **Base case:** Holds for $b = 1$ (either the black root only or the black root and one or two red children).

- **Hypothesis:** Let it hold for all red-black trees with b black nodes in every path.

- **Inductive step:** A tree with $b + 1$ black nodes in every path and two black children of the root contains two subtrees with b black nodes just under the root and has in total at least $1 + 2 \cdot (2^b - 1) = 2^{b+1} - 1$ black nodes.

- If the root has a red child, the latter has only black children, so that the total number of the black nodes can become even larger. □
Self-balancing BSTs: Red-black and AA Trees

Searching in a red-black tree is logarithmic, $O(\log n)$.

- Each path cannot contain two consecutive red nodes and increase more than twice after all the red nodes are inserted.
- Therefore, the height of a red-black tree is at most $2 \lceil \lg n \rceil$.

No precise average-case analysis (only empirical findings or properties of red-black trees with n random keys):

- The average case: $\approx \lg n$ comparisons per search.
- The worst case: $< 2 \lg n + 2$ comparisons per search.
- $O(1)$ rotations and $O(\log n)$ colour changes to restore the tree after inserting or deleting a single node.

AA-trees: the red-black trees where the left child may not be red – are even more efficient if node deletions are frequent.
Balanced B-trees

The “Big-Oh” analysis is invalid if the assumed equal time complexity of elementary operations does not hold.

- External ordered databases on magnetic or optical disks.
 - One disk access – hundreds of thousands of computer instructions.
 - The number of accesses dominates running time.
- Even logarithmic worst-case complexity of red-black or AA-trees is unacceptable.
 - Each search should involve a very small number of disk accesses.
 - Binary tree search (with an optimal height $\lg n$) cannot solve the problem.

Height of an optimal m-ary search tree (m-way branching):

$$\approx \log_m n, \text{ i.e. } \approx \frac{\lg n}{\lg m}$$
Balanced B-trees

Height of the optimal m-ary search tree with n nodes:

<table>
<thead>
<tr>
<th>n</th>
<th>10^5</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
<th>10^9</th>
<th>10^{10}</th>
<th>10^{11}</th>
<th>10^{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lceil \log_2 n \rceil$</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
</tr>
<tr>
<td>$\lceil \log_{10} n \rceil$</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>$\lceil \log_{100} n \rceil$</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>$\lceil \log_{1000} n \rceil$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Multiway search tree of order $m = 4$:

Data records are associated only with leaves (most of definitions).
A **B-tree** of order m is an m-ary search tree such that:

1. The root either is a leaf, or has $\mu \in \{2, \ldots, m\}$ children.
2. There are $\mu \in \{\lceil \frac{m}{2} \rceil, \ldots, m\}$ children of each non-leaf node, except possibly the root.
3. $\mu - 1$ keys, $(\theta_i : i = 1, \ldots, \mu - 1)$, guide the search in each non-leaf node with μ children, θ_i being the smallest key in subtree $i + 1$.
4. All leaves at the same depth.
5. Data items are in leaves, each leaf storing $\lambda \in \{\lceil \frac{l}{2} \rceil, \ldots, l\}$ items, for some l.

- Conditions 1–3: to define the memory space for each node.
- Conditions 4–5: to form a well-balanced tree.
Balanced B-trees

B-trees are usually named by their branching limits $\left\lceil \frac{m}{2} \right\rceil - m$: e.g., 2–3 trees with $m = 3$ or 2–4 trees with $m = 4$.

$m = 4$; $l = 7$:
2–4 B-tree with the leaf storage size 7 (2..4 children per node and 4..7 data items per leaf)
Balanced B-trees

Because the nodes are at least half full, a B-tree with $m \geq 8$ cannot be a simple binary or ternary tree.

- Simple **data insertion** if the corresponding leaf is not full.
- Otherwise, splitting a full leaf into two leaves, both having the minimum number of data items, and updating the parent node.
 - If necessary, the splitting propagates up until finding a parent that need not be split or reaching the root.
 - Only in the extremely rare case of splitting the root, the tree height increases, and a new root with two children (halves of the previous root) is created.

Data insertion, deletion, and retrieval in the worst case: about $\left\lceil \log_{\frac{m}{2}} n \right\rceil$ disk accesses.

- This number is practically constant if m is sufficiently big.