Data Searching and Binary Search

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures
1. Data search problem

2. Static and dynamic search

3. Sequential search

4. Sorted lists and binary search
Data Search in a Large Database

Searching in a database D of records, such that each record has a key to use in the search.

The search problem: Given a search key k, either

- return the record associated with k in D (a successful search: if k occurs several times, return any occurrence), or
- indicate that k is not found, without altering D (an unsuccessful search).

The purpose of the search:

- to access data in the record for processing, or
- to update information in the record, or
- to insert a new record or delete the record found.
An associative array, or dictionary, or a table:

- A key and a value are linked by association.
- An abstract data type (ADT) relating a disjoint set of keys to an arbitrary set of values.
- Keys of entries may not have any ordering relation and may be of unknown range.
- No upper bound on the table size: an arbitrary number of different data items can be maintained simultaneously.
- No analogy with a conventional word dictionary, having a lexicographical order.

Definition 3.1 (Textbook): The table ADT is a set of ordered pairs, or table entries \((k, v)\) where \(k\) is an unique key and \(v\) is a data value associated with the key \(k\).
Basic Operations for Tables

Abstractly, a table is a mapping (function) from keys to values.

Given a search key \(k \), the **table search** has to find the table entry \((k, v)\) containing that key. After the search, one may:

- **Retrieve** the found entry \((k, v)\), e.g., to process \(v \);
- **Remove**, or **delete** the found entry from the table;
- **Update** its value \(v \);
- **Insert** a new entry with key \(k \) if the table has no such entry.

Additional operations on a table:

- **Initialize** a table to the empty one;
- **Indicate** an unsuccessful search (i.e., that there is no entry with the given key).
Types of Search

- **Static search**: unalterable (fixed in advance) databases; no updates, deletions, or insertions.
- **Dynamic search**: alterable databases (allowable insertions, deletions, and updates).

<table>
<thead>
<tr>
<th>Key</th>
<th>Associated value</th>
<th>City</th>
<th>Country</th>
<th>State/Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>271</td>
<td>Auckland</td>
<td>New Zealand</td>
<td>North Island</td>
</tr>
<tr>
<td>DCA</td>
<td>2080</td>
<td>Washington</td>
<td>USA</td>
<td>District of Columbia (D.C.)</td>
</tr>
<tr>
<td>FRA</td>
<td>3822</td>
<td>Frankfurt</td>
<td>Germany</td>
<td>Hesse</td>
</tr>
<tr>
<td>SDF</td>
<td>12251</td>
<td>Louisville</td>
<td>USA</td>
<td>Kentucky</td>
</tr>
</tbody>
</table>

A unique integer key \(k = 26^2c_0 + 26c_1 + c_2 \) for 3-letter identifiers: \((c_i; i = 0, 1, 2 \) – ordinal numbers of A..Z in the English alphabet: A – 0; B – 1; . . . , Z – 25).

Basic implementations of the table ADT: *lists* and *trees*.

- An *elementary operation*: a query or update of a list element or tree node, or comparison of two of them.
Sequential Search in Unsorted Lists

Starting at the head of a list and examining elements one by one until finding the desired key or reaching the end of the list.

Exercise 3.1.1. Both successful and unsuccessful sequential search have worst-case and average-case time complexity $\Theta(n)$.

Proof: The unsuccessful search explores each of n keys, so the worst- and average-case time is $\Theta(n)$.

The successful search examines n keys in the worst case and $\frac{n}{2}$ keys on the average, which is still $\Theta(n)$.

- The sequential search is the only option for unsorted arrays and linked lists of records.
- A sorted list implementation allows for much better search based on the divide-and-conquer paradigm.
Binary Search in a Sorted List \(L \) of Records

\[
L = \{(k_i, v_i) : i = 1, \ldots, n; k_1 < k_2 < \ldots < k_n\}
\]

Recursive binary search for the key \(k \):

1. If the list is empty, return “not found”, otherwise
2. Choose the key \(k_m \) of the middle element of the list and
 - if \(k_m = k \), return its record, otherwise
 - if \(k_m > k \), make a recursive call on the head sublist, otherwise
 - if \(k_m < k \), make a recursive call on the tail sublist.

Iterative implementation for each sublist \((k_l, k_{l+1}, \ldots, k_r)\) of keys:

- The middle index \(m = \left\lfloor \frac{l+r}{2} \right\rfloor \).
- If \(k_m = k \), then return the record \((k_m, v_m)\) and terminate iterations.
- If \(k_m > k \), then \(r = m - 1 \).
- If \(k_m < k \), then \(l = m + 1 \).
- If \(l > r \), return “Item not found” and terminate iterations.
Non-recursive (Iterative) Binary Search in Array

The performance of binary search on an array is much better than on a linked list because of the constant time access to a given element.

begin BinarySearch (a sorted integer array $k = (k_0, k_1, \ldots, k_{n-1})$ of keys associated with items, a search key k)

\[
\begin{align*}
l &\leftarrow 0; \ r \leftarrow n - 1 \\
\text{while } \ l \leq r \text{ do } m &\leftarrow \left\lfloor \frac{l+r}{2} \right\rfloor \\
\text{if } k_m &< k \text{ then } l \leftarrow m + 1 \\
\text{else if } k_m &> k \text{ then } r \leftarrow m - 1 \\
\text{else return } m
\end{align*}
\]

end if

end while

return ItemNotFound

end
Faster Binary Search with Two-way Comparisons

begin BinarySearch2 (a sorted integer array \(k = (k_0, k_1, \ldots, k_{n-1}) \)

of keys associated with items, a search key \(k \))

\[l \leftarrow 0; \quad r \leftarrow n - 1 \]

while \(l < r \) do

\[m \leftarrow \left\lfloor \frac{l+r}{2} \right\rfloor \]

if \(k_m < k \) then \(l \leftarrow m + 1 \)

else \(r \leftarrow m \)

end if

end while

if \(k_l = k \) then return \(l \)

else return ItemNotFound

end if

end
Binary Search in Array \(\{k_0 = 7, \ldots, k_{15} = 99\} \) for Key \(k = 42 \)

Successful search: return key position 4

\[
l = m = r = 4
\]

\[
l = 4 \quad m = 5 \quad r = 6
\]

\[
l = 0 \quad m = 3 \quad r = 6
\]

\[
l = 0 \quad m = 7
\]

\[
l = m = r = 4
\]

\[
[4]
\]

\[
[3]
\]

\[
[2]
\]

\[
[1]
\]
Definition 3.6 (Textbook). A binary search tree (BST) is a binary tree that satisfies the following ordering relation: for every node \(i \) in the tree, the values of all the keys in the left subtree are smaller than the key in \(i \) and the values of all the keys in the right subtree are greater than the key in \(i \).
Binary Search: Worst-Case Time Complexity $\Theta(\log n)$

The complete binary tree of $n = 2^\nu - 1$ keys (each internal node has 2 children); $\nu\{n\} = 1\{1\}, 2\{3\}, 3\{7\}, \ldots$:

- The tree height is $\nu - 1$ since the tree is balanced.
- Each tree level l contains 2^l nodes:
 - $l = 0$ – the root (one node).
 - $l = 1, \ldots, \nu - 2$ – internal nodes: 2^l at each level l.
 - $l = \nu - 1$ – the $2^{\nu-1}$ leaves.
- $l + 1$ comparisons to find a key of level l (see Slide 11).
- **The worst case**: $\nu = \log(n + 1)$ comparisons.

The worst-case time complexity of unsuccessful and successful binary search is $\Theta(\log n)$.
Lemma: The average-case time complexity of successful and unsuccessful binary search in a balanced tree is $\Theta(\log n)$.

Proof: The depth of the tree is $d = \lceil \log (n + 1) \rceil - 1 \equiv \lceil \nu \rceil - 1$.

- At least half of the tree nodes have the depth at least $d - 1$.
- The average depth over all nodes is at least $\frac{d}{2} \in \Theta(\log n)$.
- The average depth over all nodes of an arbitrary (not necessarily balanced) binary tree is $\Omega(\log n)$.

The expected search time for an arbitrary balanced tree is equal to the average balanced tree depth $\Theta(\log n)$.

Definitions (see Textbook, Appendix D7):
- Depth of a node – the length (number of edges) of the unique path to the root.
- Height of a node – the length of the longest path from the node to a leaf.
- Height of the tree – the height of the root.
Interpolation Search

Improvement of binary search if it is possible to guess where the desired key sits.

- **A simple practical example:** the search for C or X in a phone directory.
- Practical if the sorted keys are almost uniformly distributed over their range.
- Binary search: the middle position \(m = \frac{l + r}{2} = l + \left\lceil \frac{r - l}{2} \right\rceil \).
- Interpolation search: the predicted position of key \(k \) if the keys are uniformly distributed between \(k_l \) and \(k_r \):

\[
m = l + \left\lceil \rho(r - l) \right\rceil \equiv l + \left\lceil \frac{k - k_l}{k_r - k_l}(r - l) \right\rceil
\]
Dynamic Binary Tree Search

Static binary search is converted into a **dynamic binary tree search** by allowing for insertion and deletion of data records.

- Dynamic binary tree search makes actual use of the binary search tree (BST) data structure.
- The BST data structure is constructed by linking data records.
- A BST allows for inserting a new node.
- Any existing node of a BST may be removed.
- Using an array implementation of a sorted list, both successful and unsuccessful search, retrieval, and updating take time in $\Theta(\log n)$ on average and in the worst case.
 - But insertion and deletion are in $\Theta(n)$ in the worst and average case.
- Using a linked list, all the above operations take time in $\Theta(n)$.