
Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Algorithm Quicksort: Analysis of Complexity

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

1 Algorithm quicksort

2 Correctness of quicksort

3 Quadratic worst-case time complexity

4 Linearithmic average-case time complexity

5 Choosing a better pivot

6 Partitioning algorithm

2 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Algorithm QuickSort

Proposed in 1959/60 by
Sir Charles Antony Richard (Tony) Hoare

Born: 11.01.1934 (Colombo, Sri Lanka)
Fellow of the Royal Society (1982)
Fellow of the Royal Academy of Engineering (2005)

• Like mergesort, the divide-and-conquer paradigm.

• Unlike mergesort, subarrays for sorting and merging are
formed dynamically, depending on the input, rather than are
predetermined.

• Almost all the work: in the division into subproblems.

• Very fast on “random” data, but unsuitable for mission-critical
applications due to the very bad worst-case behaviour.

3 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Basic Recursive Quicksort

If the size, n, of the list, is 0 or 1, return the list. Otherwise:

1 Choose one of the items in the list as a pivot.

2 Next, partition the remaining items into two disjoint sublists,
such that all items greater than the pivot follow it, and all
elements less than the pivot precede it.

3 Finally, return the result of quicksort of the “head” sublist,
followed by the pivot, followed by the result of quicksort of
the “tail” sublist.

Partitioning: a[0], . . . , a[n− 1]

Recursive quicksort:
a[0], . . . , a[i− 1]

Recursive quicksort:
a[i+ 1], . . . , a[n− 1]

Pivot:
a[i]

a[∗] < pivot a[∗] ≥ pivot

4 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Lemma 2.13 (Textbook): Quicksort is correct.

Proof: by math induction on the size n of the list.

• Basis. If n = 1, the algorithm is correct.

• Hypothesis. It is correct on lists of size smaller than n.

• Inductive step. After positioning, the pivot p at position i;
i = 1, . . . , n− 1, splits a list of size n into the head sublist of
size i and the tail sublist of size n− 1− i.
• Elements of the head sublist are not greater than p.
• Elements of the tail sublist are not smaller than p.
• By the induction hypothesis, both the head and tail sublists

are sorted correctly.
• Therefore, the whole list of size n is sorted correctly.

Any implementation specifies what to do with items equal to the pivot.

5 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Analysing Quicksort: The Worst Case T (n) ∈ Ω(n2)

The choice of a pivot is most critical:

• The wrong choice may lead to the worst-case quadratic time
complexity.

• A good choice equalises both sublists in size and leads to
linearithmic (“n log n”) time complexity.

The worst-case choice: the pivot happens to be the largest (or
smallest) item.

• Then one subarray is always empty.

• The second subarray contains n− 1 elements, i.e. all the
elements other than the pivot.

• Quicksort is recursively called only on this second group.

However, quicksort is fast on the “randomly scattered” pivots.

6 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Analysing Quicksort: The Worst Case T (n) ∈ Ω(n2)

Lemma 2.14 (Textbook): The worst-case time complexity of
quicksort is Ω(n2).

Proof. The partitioning step: at least, n− 1 comparisons.

• At each next step for n ≥ 1, the number of comparisons is
one less, so that T (n) = T (n− 1) + (n− 1); T (1) = 0.

• “Telescoping” T (n)− T (n− 1) = n− 1:

T (n)+T (n− 1)+T (n− 2)+. . .+T (3)+T (2)
−T (n− 1)−T (n− 2)−. . .−T (3)−T (2)− T (1)
= (n− 1) + (n− 2) +. . .+ 2 + 1 − 0

T (n)= (n− 1) + (n− 2) +. . .+ 2 + 1 = (n−1)n
2

This yields that T (n) ∈ Ω(n2).

7 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Analysing Quicksort: The Average Case T (n) ∈ Θ(n log n)

For any pivot position i; i ∈ {0, . . . , n− 1}:
• Time for partitioning an array : cn

• The head and tail subarrays contain i and n− 1− i items,
respectively: T (n) = cn + T (i) + T (n− 1− i)

Average running time for sorting (a more complex recurrence):

T (n)= 1
n

∑n−1
i=0 (T (i) + T (n− 1− i) + cn)

= 2
n (T (0) + T (1) + . . . + T (n− 2) + T (n− 1)) + cn, or

nT (n)= 2 (T (0) + T (1) + . . . + T (n− 2) + T (n− 1)) + cn2

(n− 1)T (n− 1)= 2 (T (0) + T (1) + . . . + T (n− 2)) + c(n− 1)2

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 2cn− c ≈ 2T (n− 1) + 2cn

Thus, nT (n) ≈ (n + 1)T (n− 1) + 2cn, or T (n)
n+1 = T (n−1)

n + 2c
n+1

8 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Analysing Quicksort: The Average Case T (n) ∈ Θ(n log n)

“Telescoping” T (n)
n+1 −

T (n−1)
n = 2c

n+1 to get the explicit form:

T (n)
n+1 +T (n−1)

n + T (n−2)
n−1 + . . . + T (2)

3 + T (1)
2

−T (n−1)
n − T (n−2)

n−1 − . . .− T (2)
3 −

T (1)
2 −

T (0)
1

= 2c
n+1 + 2c

n + . . . + 2c
3 + 2c

2 , or

T (n)
n+1 =T (0)

1 + 2c
(
1
2 + 1

3 + . . . + 1
n + 1

n+1

)
≈ 2c(Hn+1 − 1) ≈ c′ log n

(Hn = 1 + 1
2 + 1

3 + . . . + 1
n ≈ lnn + 0.577 is the nth harmonic number).

Therefore, T (n) ≈ c′(n + 1) log n ∈ Θ(n log n).

Quicksort is our first example of dramatically different worst-case
and average-case performances!

9 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Implementations of Quicksort

Choices to be made for implementing the basic quicksort
algorithm:

• How to implement the list?

• How to choose the pivot?

• How to partition the list around the pivot?

Passive pivot choice – a fixed position in each sublist

• Ω(n2) running time for frequent in practice nearly sorted lists
under the näıve selection of the first or last position.

• A more reasonable choice: the middle element of each sublist.

• Random inputs resulting in Ω(n2) time are rather unlikely.

• But still: vulnerability to an “algorithm complexity attack”
with specially designed “worst-case” inputs.

10 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Active Pivot Strategy

The best active pivot – the exact median of the list, dividing it into
(almost) equal sized sublists, – is computationally inefficient.

The median-of-three strategy to approximate the true median

The pivot p = median {a[ibeg], a[imid], a[iend]} where ibeg; iend,

and imid =
⌊
ibeg+iend

2

⌋
refer to the first, last, and middlea

elements, respectively, of a sublist, a[ibeg], a[ibeg + 1, . . . , a[iend].

abzc is an integer floor of the real value z.

An example: a = (45, 25, 15, 31,75, 80, 60, 20,19)

median{45, 75, 19} → 19 ≤ 45 ≤ 75]→ 45

a = ((19, 25, 15, 31, 20),45, (80, 60, 75))

11 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Active Pivot Strategy

Bad performance is still possible with the median-of-three strategy,
but becomes much less likely, than for a passive strategy.

Random choice of the pivot

• The expected running time is Θ(n log n) for any given input.

• No adversary can force the bad behaviour by choosing nasty
inputs.

• A small extra overhead for generating a “random” pivot
position.

• Bad cases: only by bad luck, independent of the input.

• An alternative: to first randomly shuffle the input in linear,
Θ(n), time and use then the näıve pivot selection.

12 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Partitioning Algorithm

Head End
↑L ↑R

1 Initialisation:
1 Start pointers L and R at the head of the list and at the end

plus one, respectively.
2 Swap the pivot element, p, to the head of the list.

2 Iteration: while L < R, do:

1 Decrement R
until it meets an element less than or equal to p.

2 Increment L
until it meets an element greater than or equal to p.

3 Swap the elements pointed by L and R.

3 Once L = R, swap the pivot element with the element
pointed to by L.

13 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Example 2.17 (Textbook): Partitioning a List

Data to sort; pivot p = a[7] = 31 Description
25 8 2 91 15 50 20 31 70 65 Initial list

L = 0;R = 10
31 8 2 91 15 50 20 25 70 65 Move pivot to head
31 8 2 91 15 50 20 25 70 65 Stop R
31 8 2 91 15 50 20 25 70 65 Stop L
31 8 2 25 15 50 20 91 70 65 Swap a[R] and a[L]
31 8 2 25 15 50 20 91 70 65 Stop R
31 8 2 25 15 50 20 91 70 65 Stop L
31 8 2 25 15 20 50 91 70 65 Swap a[R] and a[L]
31 8 2 25 15 20 50 91 70 65 Stop R = L
20 8 2 25 15 31 50 91 70 65 Swap a[L] with pivot

Head (left) sublist ≤ p ≤ Tail (right) sublist

14 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Correctness of Partitioning

Lemma 2.18 (Textbook): The Partitioning Is Correct

Proof. After each swap of elements a[L] and a[R],

• each element to the left of index L, as well as a[L], is less than or
equal to the pivot p;

• each element to the right of index R, as well as a[R], is greater
than or equal to the pivot p.

After the final swap of p with a[L], which does not exceed p, all elements
smaller than p are to its left, and all larger are to its right. �

• Quicksort is easier to program for array, than other types of lists.

• Constant-time pivot selection is only for arrays, but not linked lists.

• What time will the median-of-three take for a linked list?

• Partition needs a doubly-linked list to scan forward and backward.

15 / 16



Outline Quicksort Correctness Ω(n2) Θ(n log n) Pivot choice Partitioning

Pseudocode for Array-Based Quicksort

algorithm quickSort sorts the subarray a[l..r]

Input: array a[0..n− 1]; array indices l, r
begin

if l < r then
i← pivot(a, l, r) return position of pivot

j ← partition(a, l, r, i) return final position of pivot

quickSort(a, l, j − 1) sort left subarray

quickSort(a, j + 1, r) sort right subarray
end if
return a

end

16 / 16


	Algorithm quicksort
	Correctness of quicksort
	Quadratic worst-case time complexity
	Linearithmic average-case time complexity
	Choosing a better pivot
	Partitioning algorithm

