
Outline Worst-case Average-case Inversions

Lecture 7: Insertion Sort
Analysis of Complexity

Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 13

Outline Worst-case Average-case Inversions

1 Worst-case

2 Average-case

3 Inversions

2 / 13

Outline Worst-case Average-case Inversions

Worst-case Complexity of Insertion Sort

Iterative growth of a head (“sorted” sublist) of a list A:

a[0] a[1] . . . a[i− 1]︸ ︷︷ ︸
Head of size i

a[i] a[i + 1] . . . a[n− 1]︸ ︷︷ ︸
Tail of size n−i

n− 1 iterations (stages) i = 1, 2, . . . , n− 1;
j; 1 ≤ j ≤ i, comparisons and j or j − 1 moves per stage.

• Insertion sort is correct, since the head sublist is always
sorted, and eventually expands to include all elements of A.

• The worst-case complexity is Θ(n2).
• The worst-case inputs A consist of distinct items in reverse

sorted order: a[0] > a[1] > . . . > a[n− 1].
• The total worst-case number of comparisons is

1 + 2 + . . . + n− 1 = (n−1)n
2 = 1

2 (n2 − n) ∈ Θ(n2).

3 / 13

Outline Worst-case Average-case Inversions

Average-case Complexity of Insertion Sort

Lemma 2.3, p.30

The average-case time complexity of insertion sort is Θ(n2)

The proof’s outline:

• Assuming all possible inputs are equally likely, evaluate the
average number Ci of comparisons at each stage
i = 1, . . . , n− 1.

• Calculate the average total number C =
n−1∑
i=1

Ci.

• Evaluate the average-case complexity of insertion sort by
taking into account that the total number of data moves is at
least zero and at most the number of comparisons.

4 / 13

Outline Worst-case Average-case Inversions

Average Complexity of Insertion Sort at Stage i

i + 1 positions in the already ordered head a[0], . . . , a[i− 1] of a
list A to insert the next unordered yet item a[i]:

a[0] a[1] a[2] . . . a[i− 1] a[i]

↑0 ↑1 ↑2 ↑... ↑i−1 ↑i

For placing [a[i] into each preceding position j = i, i− 1, . . . , 1,
the algorithm performs i− j + 1 comparisons and i− j moves

• For position j = 0, it performs i comparisons and i moves.

Therefore, the average number of comparisons at stage i:

Ci =
1 + 2 + . . . + i + i

i + 1
=

i(i+1)
2 + i

i + 1
=

i

2
+

i

i + 1
≡ i

2
+

(
1− 1

i + 1

)
5 / 13

Outline Worst-case Average-case Inversions

Total Average Complexity for n Input Items

The total average number of comparisons for n− 1 stages:

C =

C1︷ ︸︸ ︷(
1

2
+

(
1− 1

2

))
+

C2︷ ︸︸ ︷(
2

2
+

(
1− 1

3

))
+ . . . +

Cn−1︷ ︸︸ ︷(
n− 1

2
+

(
1− 1

n

))
= 1

2 (1 + 2 + . . . + (n− 1))︸ ︷︷ ︸
(n−1)n

2

+

(
1− 1

2

)
+

(
1− 1

3

)
+ . . . +

(
1− 1

n

)
︸ ︷︷ ︸

n−Hn

= (n−1)n
4 + n−Hn ∈ Θ(n2)

where Hn =
n∑

i=1

1
i ≈ lnn when n→ 0 is the n-th harmonic number.

6 / 13

Outline Worst-case Average-case Inversions

Math Appendix: Evaluating Harmonic Numbers

0 1 2 3 4 5 6 7 8 9 10

0.25

0.5

0.75

1

Hn =
n∑

i=1

1
i = 1 + 1

2 + 1
3 + . . . + 1

i

Hn >
n∫
1

dx
x = lnn > Hn − 1

1 + lnn > Hn > lnn ⇒ Hn = Θ(log n)

7 / 13

Outline Worst-case Average-case Inversions

Analysis of Inversions

The running time of insertion sort is strongly related to inversions
in a list A to be sorted.

Definition 2.5 (p.30): An inversion in a list A = [a1, a2, . . . , an]

is any ordered pair of positions (i, j) such that i < j but ai > aj .

Examples of inversions: [. . . , 2, . . . , 1] or [100, . . . , 35, . . .].

List A Number of Reverse list Arev Number of Total
inversions inversions

[3, 2, 5] 1 [5, 2, 3] 2 3
[3, 2, 5], 1] 4 [1, 5, 2, 3] 2 6

[1, 2, 3, 5, 7] 0 [7, 5, 3, 2, 1] 10 10

The number of inversions of a list is a measure of how far it is from being

sorted.

8 / 13

Outline Worst-case Average-case Inversions

Analysis of Inversions

Number of inversions Ii, comparisons Ci and data moves Mi for
each element a[i] in A:

Element i 0 1 2 3 4 5 6
A 44 13 35 18 15 10 20
Ii 1 1 2 3 5 2 I = 14
Ci 1 2 3 4 5 3 C = 18
Mi 1 1 2 3 5 2 M = 14

It is always true that Ii = Mi, so the total number I =
n−1∑
i=1

Ii of

inversions is equal to the total number M =
n−1∑
i=1

Mi of backward

moves of elements a[i] during the sort.

9 / 13

Outline Worst-case Average-case Inversions

Analysis of Inversions

The total number of data comparisions C =
n−1∑
i=1

Ci is also equal to

the total number of inversions plus at most n− 1.

Total number of inversions in both an arbitrary list A and its
reverse Arev is equal to the total number of the ordered pairs
(i < j) of integers i, j ∈ {1, . . . , n− 1}:(

n− 1

2

)
=

(n− 1)n

2

• A sorted list has no inversions.

• A reverse sorted list of size n has (n−1)n
2 inversions.

• In the average, all lists of size n have (n−1)n
4 inversions.

10 / 13

Outline Worst-case Average-case Inversions

Complexity of Insertion Sort by Analysis of Inversions

Exactly one inversion is removed by swapping two neighbours
ai−1 > ai.

• If an original list has I inversions, insertion sort has to swap I
pairs of neighbours.

• A list with I inversions results in Θ(n + I) running time of
insertionSort because of Θ(n) other operations in the
algorithm.
• In the very rare cases of nearly sorted lists for which I is Θ(n),

insertion sort runs in linear time.
• The worst-case time: cn

2

2 , or Θ(n2).

• The average-case time: cn
2

4 , or Θ(n2).

More efficient sorting algorithms must eliminate more than
just one inversion between neighbours per swap.

11 / 13

Outline Worst-case Average-case Inversions

Implementation of Insertion Sort

The number of comparisons does not depend on how the list is
implemented, but the number of moves does.

• Backward moves in an array implementation of a list:
• Shifting elements to the right (linear time per stage) in the

worst and average case, or
• Successive swaps to move the element backward.

• Insertion operation in a linked list implementation of a list:
• Constant-time insertion of an element.
• Fewer swaps by simply scanning backward (but it may take

time for a singly linked list).

None of the implementation issues affect the asymptotic Big-Theta

running time of the algorithm, just the hidden constants and lower order

terms, due to too many comparisons in the worst and average case.

12 / 13

Outline Worst-case Average-case Inversions

One More Quadratic Θ(n2) Sorting Algorithm (p.181)

// Selection sort of an input array a of size n

// (building a tail by successive minima selection from a head)

public static void selectionSort(int [] a) {
for (int i = 0; i < a.length - 1; i++) {

int posMin = i;

for (int k = i + 1; k < a.length; k++) {
if (a[posMin] > a[k]) posMin = k;

}
if (posMin != i) { swap a[i] and a[posMin]

int tmp = a[i];

a[i] = a[posMin];

a[posMin] = tmp;

}
}

}
13 / 13

	Worst-case
	Average-case
	Inversions

