Lecture 3: Analysing Complexity of Algorithms
Big Oh, Big Omega, and Big Theta Notation

Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures
1. Complexity
2. Basic tools
3. Big-Oh
4. Big Omega
5. Big Theta
6. Examples
Typical Complexity Curves

Running time $T(n)$ is proportional to:

<table>
<thead>
<tr>
<th>$T(n)$</th>
<th>Complexity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) \propto \log n$</td>
<td>logarithmic</td>
</tr>
<tr>
<td>$T(n) \propto n$</td>
<td>linear</td>
</tr>
<tr>
<td>$T(n) \propto n \log n$</td>
<td>linearithmic</td>
</tr>
<tr>
<td>$T(n) \propto n^2$</td>
<td>quadratic</td>
</tr>
<tr>
<td>$T(n) \propto n^3$</td>
<td>cubic</td>
</tr>
<tr>
<td>$T(n) \propto n^k$</td>
<td>polynomial</td>
</tr>
<tr>
<td>$T(n) \propto 2^n$</td>
<td>exponential</td>
</tr>
<tr>
<td>$T(n) \propto k^n; k > 1$</td>
<td>exponential</td>
</tr>
</tbody>
</table>
Separating an Algorithm Itself from Its Implementation

Two concepts to separate an algorithm from implementation:

- The input data size n, or the number of individual data items in a single data instance to be processed.
- The number of elementary operations $f(n)$ taken by an algorithm, or its running time.

The running time of a program implementation: $cf(n)$

- The constant factor c can rarely be determined and depends on a computer, operating system, language, compiler, etc.

When the input size increases from $n = n_1$ to $n = n_2$, all other factors being equal, the relative running time of the program increases by a factor of $\frac{T(n_2)}{T(n_1)} = \frac{cf(n_1)}{cf(n_2)} = \frac{f(n_1)}{f(n_2)}$.
Relative Growth $g(n) = \frac{f(n)}{f(5)}$ of Running Time

The approximate running time for large input sizes gives enough information to distinguish between a good and a bad algorithm.

<table>
<thead>
<tr>
<th>Function $f(n)$</th>
<th>Input size n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$\log_5 n$</td>
</tr>
<tr>
<td>Linear</td>
<td>n</td>
</tr>
<tr>
<td>Linearithmic</td>
<td>$n \log_5 n$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>n^2</td>
</tr>
<tr>
<td>Cubic</td>
<td>n^3</td>
</tr>
<tr>
<td>Exponential</td>
<td>2^n</td>
</tr>
</tbody>
</table>
Big-Oh, Big-Theta, and Big-Omega Tools

Let $f(n)$ and $g(n)$ be nonnegative-valued functions defined on nonnegative integers n.

Math notation for “of the order of . . .” or “roughly proportional to . . .”:

- Big-Oh (actually: Big-Omicron) $O(\ldots)$ \Rightarrow $g(n) = O(f(n))$
- Big-Theta $\Theta(\ldots)$ \Rightarrow $g(n) = \Theta(f(n))$
- Big-Omega $\Omega(\ldots)$ \Rightarrow $g(n) = \Omega(f(n))$

Big Oh $O(\ldots)$ – Formal Definition

The function $g(n)$ is $O(f(n))$ (read: $g(n)$ is Big Oh of $f(n)$) **iff** there exists a positive real constant c and a positive integer n_0 such that $g(n) \leq cf(n)$ for all $n > n_0$.

The notation **iff** abbreviates “if and only if”.
Example 1.8; p.13: \(g(n) = 100 \log_{10} n \) is \(O(n) \)

\[
g(n) < n \text{ if } n > 238 \text{ or } g(n) < 0.3n \text{ if } n > 1000.
\]

By definition, \(g(n) \) is \(O(f(n)) \), or \(g(n) = O(f(n)) \) if a constant \(c > 0 \) exists, such that \(cf(n) \) grows faster than \(g(n) \) for all \(n > n_0 \).

- To prove that some \(g(n) \) is \(O(f(n)) \) means to show that for \(g \) and \(f \) such constants \(c \) and \(n_0 \) exist.
- The constants \(c \) and \(n_0 \) are interdependent.
- \(g(n) \) is \(O(f(n)) \) iff the graph of \(g(n) \) is always below or at the graph of \(cf(n) \) after \(n_0 \).
Big-Oh $O(\ldots)$: Informal Meaning

$O(f(n))$ generalises an **asymptotic upper bound**.

- If $g(n)$ is $O(f(n))$, an algorithm with running time $g(n)$ runs **asymptotically**, i.e. for large n, **at most** as fast, to within a constant factor, as an algorithm with running time $f(n)$.
 - In other words, $g(n)$ for large n may approach $cf(n)$ closer and closer while the relationship $g(n) \leq cf(n)$ holds for $n > n_0$.
 - The scaling factor c and the threshold n_0 are interdependent and differ for different particular functions $g(n)$ in $O(f(n))$.
- Notations $g(n) = O(f(n))$ or $g(n)$ is $O(f(n))$ mean actually $g(n) \in O(f(n))$.
 - The notation $g(n) \in O(f(n))$ indicates that $g(n)$ is a member of the set $O(f(n))$ of functions.
 - All the functions in the set $O(f(n))$ are increasing with the same or the lesser rate as $f(n)$ when $n \to \infty$.
Big-Oh $O(\ldots)$: Informal Meaning

$O(f(n))$ generalises an **asymptotic upper bound**.

- If $g(n)$ is $O(f(n))$, an algorithm with running time $g(n)$ runs **asymptotically**, i.e. for large n, **at most** as fast, to within a constant factor, as an algorithm with running time $f(n)$.
 - In other words, $g(n)$ for large n may approach $cf(n)$ closer and closer while the relationship $g(n) \leq cf(n)$ holds for $n > n_0$.
 - The scaling factor c and the threshold n_0 are interdependent and differ for different particular functions $g(n)$ in $O(f(n))$.
- Notations $g(n) = O(f(n))$ or $g(n)$ is $O(f(n))$ mean actually $g(n) \in O(f(n))$.
 - The notation $g(n) \in O(f(n))$ indicates that $g(n)$ is a member of the set $O(f(n))$ of functions.
 - All the functions in the set $O(f(n))$ are increasing with the same or the lesser rate as $f(n)$ when $n \rightarrow \infty$.

Big Omega $\Omega(\ldots)$

The function $g(n)$ is $\Omega(f(n))$
iff there exists a positive real constant c and a positive integer n_0 such that $g(n) \geq cf(n)$ for all $n > n_0$.

- $\Omega(\ldots)$ is complementary to $O(\ldots)$.
- It generalises the concept of “lower bound” (\geq) in the same way as $O(\ldots)$ generalises the concept of “upper bound” (\leq): if $g(n)$ is $\Omega(f(n))$ then $f(n)$ is $O(g(n))$.
- **Example 1**: $5n^2$ is $\Omega(n)$ because $5n^2 \geq 5n$ for $n \geq 1$.
- **Example 2**: $0.01n$ is $\Omega(\log n)$ because $0.01n \geq 0.5 \log_{10} n$ for $n \geq 100$.
The function $g(n)$ is $\Omega(f(n))$ iff there exists a positive real constant c and a positive integer n_0 such that $g(n) \geq cf(n)$ for all $n > n_0$.

- $\Omega(\ldots)$ is complementary to $O(\ldots)$.
- It generalises the concept of “lower bound” (\geq) in the same way as $O(\ldots)$ generalises the concept of “upper bound” (\leq): if $g(n)$ is $\Omega(f(n))$ then $f(n)$ is $O(g(n))$.

- **Example 1**: $5n^2$ is $\Omega(n)$ because $5n^2 \geq 5n$ for $n \geq 1$.
- **Example 2**: $0.01n$ is $\Omega(\log n)$ because $0.01n \geq 0.5\log_{10} n$ for $n \geq 100$.
The function $g(n)$ is $\Omega(f(n))$ iff there exists a positive real constant c and a positive integer n_0 such that $g(n) \geq cf(n)$ for all $n > n_0$.

- $\Omega(\ldots)$ is complementary to $O(\ldots)$.
- It generalises the concept of “lower bound” (\geq) in the same way as $O(\ldots)$ generalises the concept of “upper bound” (\leq): if $g(n)$ is $\Omega(f(n))$ then $f(n)$ is $O(g(n))$.
- **Example 1:** $5n^2$ is $\Omega(n)$ because $5n^2 \geq 5n$ for $n \geq 1$.
- **Example 2:** $0.01n$ is $\Omega(\log n)$ because $0.01n \geq 0.5 \log_{10} n$ for $n \geq 100$.
Big Theta Θ(…)

The function $g(n)$ is $\Theta(f(n))$

iff there exists two positive real constants c_1 and c_2 and a positive integer n_0 such that $c_1 f(n) \leq g(n) \leq c_2 f(n)$ for all $n > n_0$.

- If $g(n)$ is $\Theta(f(n))$ then $g(n)$ is $O(f(n))$ and $f(n)$ is $O(g(n))$ or, what is the same, $g(n)$ is $O(f(n))$ and $g(n)$ is $\Omega(f(n))$:
 - $g(n)$ is $O(f(n)) \rightarrow g(n) \leq c' f(n)$ for $n > n'$.
 - $g(n)$ is $\Omega(f(n)) \rightarrow f(n) \leq c'' g(n)$ for $n > n''$.
 - $g(n)$ is $\Theta(f(n)) \leftrightarrow c'' = \frac{1}{c_1}; c' = c_2$, and $n_0 = \max\{n', n''\}$.
- Informally, if $g(n)$ is $\Theta(f(n))$ then both the functions have the same rate of increase.
- **Example:** the same rate of increase for $g(n) = n + 5n^{0.5}$ and $f(n) = n$ because $n \leq n + 5n^{0.5} \leq 6n$ for $n > 1$.
Big Theta \(\Theta(\ldots) \)

The function \(g(n) \) is \(\Theta(f(n)) \) iff there exists two positive real constants \(c_1 \) and \(c_2 \) and a positive integer \(n_0 \) such that \(c_1 f(n) \leq g(n) \leq c_2 f(n) \) for all \(n > n_0 \).

- If \(g(n) \) is \(\Theta(f(n)) \) then \(g(n) \) is \(O(f(n)) \) and \(f(n) \) is \(O(g(n)) \) or, what is the same, \(g(n) \) is \(O(f(n)) \) and \(g(n) \) is \(\Omega(f(n)) \):
 - \(g(n) \) is \(O(f(n)) \) \(\rightarrow \) \(g(n) \leq c' f(n) \) for \(n > n' \).
 - \(g(n) \) is \(\Omega(f(n)) \) \(\rightarrow \) \(f(n) \leq c'' g(n) \) for \(n > n'' \).
 - \(g(n) \) is \(\Theta(f(n)) \) \(\leftarrow \) \(c'' = \frac{1}{c_1} \); \(c' = c_2 \), and \(n_0 = \max\{n', n''\} \).

- Informally, if \(g(n) \) is \(\Theta(f(n)) \) then both the functions have the same rate of increase.

- **Example:** the same rate of increase for \(g(n) = n + 5n^{0.5} \) and \(f(n) = n \) because \(n \leq n + 5n^{0.5} \leq 6n \) for \(n > 1 \).
The function $g(n)$ is $\Theta(f(n))$ iff there exists two positive real constants c_1 and c_2 and a positive integer n_0 such that $c_1 f(n) \leq g(n) \leq c_2 f(n)$ for all $n > n_0$.

- If $g(n)$ is $\Theta(f(n))$ then $g(n)$ is $O(f(n))$ and $f(n)$ is $O(g(n))$ or, what is the same, $g(n)$ is $O(f(n))$ and $g(n)$ is $\Omega(f(n))$:
 - $g(n)$ is $O(f(n)) \rightarrow g(n) \leq c' f(n)$ for $n > n'$.
 - $g(n)$ is $\Omega(f(n)) \rightarrow f(n) \leq c'' g(n)$ for $n > n''$.
 - $g(n)$ is $\Theta(f(n)) \leftarrow c'' = \frac{1}{c_1}; c' = c_2$, and $n_0 = \max\{n', n''\}$.

- Informally, if $g(n)$ is $\Theta(f(n))$ then both the functions have the same rate of increase.

- **Example:** the same rate of increase for $g(n) = n + 5n^{0.5}$ and $f(n) = n$ because $n \leq n + 5n^{0.5} \leq 6n$ for $n > 1$.
Comparisons: Two Crucial Ideas

- The exact running time function $g(n)$ is not very important since it can be multiplied by an arbitrary positive constant, c.

- The relative behaviour of two functions is compared only asymptotically, for large n, but not near the origin where it may make no sense.
 - If the constants c involved are very large, the asymptotical behaviour loses practical interest!
 - In most cases, however, the constants remain fairly small.
 - To prove that $g(n)$ is not $O(f(n))$, $\Omega(f(n))$, or $\Theta(f(n))$, one has to show that the desired constants do not exist, i.e. lead to a contradiction.
 - $g(n)$ and $f(n)$ in the Big-Oh, -Omega, and -Theta definitions mostly relate, respectively, to “exact” and rough approximate (like $\log n$, n, n^2, etc) running time on inputs of size n.
Example 1.11, p.14

Prove that linear function \(g(n) = an + b; \ a > 0 \), is \(O(n) \).

The proof: By the following chain of inequalities:
\[
g(n) \leq an + |b| \leq (a + |b|)n \text{ for all } n \geq 1
\]

Do not write \(O(2n) \) or \(O(an + b) \) as this means still \(O(n) \)!

\(O(n) \)-time:
\[
\begin{align*}
T(n) &= 3n + 1 & T(n) &= 10^8 + n \\
T(n) &= 50 + 10^{-8}n & T(n) &= 10^6n + 1
\end{align*}
\]

- Remember that “Big-Oh”, as well as “Big-Omega” and “Big-Theta”, describes an asymptotic behaviour for large problem sizes.
- Only the dominant terms as \(n \rightarrow \infty \) need to be shown as the argument of “Big-Oh”, “Big-Omega”, and “Big-Theta”.

Example 1.12, p.15

The polynomial $P_k(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_2 n^2 + a_1 n + a_0$; $a_k > 0$, is $O(n^k)$.

The proof: $P_k(n) \leq (a_k + |a_{k-1}| + \ldots + |a_0|) n^k$ for $n \geq 1$.

- Do not write $O(P_k(n))$ as this means still $O(n^k)$!
- $O(n^k)$-time:
 \[
 \begin{align*}
 T(n) &= 3n^2 + 5n + 1 \text{ is } O(n^2) & \text{Is it also } O(n^3) ? \\
 T(n) &= 10^{-8} n^3 + 10^8 n^2 + 30 \text{ is } O(n^3) & \text{Is it also } \Omega(n^2) ? \\
 T(n) &= 10^{-8} n^8 + 1000 n + 1 \text{ is } O(n^8) & \text{Is it also } \Theta(n^8) ?
 \end{align*}
 \]

$T(n) = P_k(n)$ is
\[
\begin{align*}
O(n^m); & \quad m \geq k \\
\Theta(n^k); & \quad \Theta(n^k); \\
\Omega(n^m); & \quad m \leq k
\end{align*}
\]
The polynomial \(P_k(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_2 n^2 + a_1 n + a_0; \)
\(a_k > 0, \) is \(O(n^k). \)

The proof: \(P_k(n) \leq (a_k + |a_{k-1}| + \ldots + |a_0|) n^k \) for \(n \geq 1. \)

- **Do not write** \(O(P_k(n)) \) **as this means still** \(O(n^k)! \)

- **\(O(n^k) \)-time:**

\[
T(n) = 3n^2 + 5n + 1 \quad \text{is} \quad O(n^2) \quad \text{Is it also} \quad O(n^3)?
\]

\[
T(n) = 10^{-8} n^3 + 10^8 n^2 + 30 \quad \text{is} \quad O(n^3) \quad \text{Is it also} \quad \Omega(n^2)?
\]

\[
T(n) = 10^{-8} n^8 + 1000n + 1 \quad \text{is} \quad O(n^8) \quad \text{Is it also} \quad \Theta(n^8)?
\]

\[
T(n) = P_k(n) \quad \text{is} \quad \begin{cases}
O(n^m); & m \geq k \\
\Theta(n^k); & \\
\Omega(n^m); & m \leq k
\end{cases}
\]
Example 1.13, p.15

- The exponential function \(g(n) = 2^{n+k} \), where \(k \) is a constant, is \(O(2^n) \) because \(2^{n+k} = 2^k 2^n \) for all \(n \).

- Generally, \(g(n) = m^{n+k} \) is \(O(l^n) \); \(l \geq m > 1 \), because \(m^{n+k} \leq l^{n+k} = l^k l^n \) for any constant \(k \).

A “brute-force” search for the best combination of \(n \) binary decisions by exhausting all the \(2^n \) possible combinations has exponential time complexity!

- \(2^{30} \approx 10^9 = 1,000,000,000 \) and
 \(2^{40} \approx 10^{12} = 1,000,000,000,000 \)

- Therefore, try to find a more efficient way of solving the decision problem if \(n \geq 30 \ldots 40 \).
For each $m > 1$, the logarithmic function $g(n) = \log_m(n)$ has the same rate of increase as $\lg(n)$, i.e. $\log_2 n$, because
\[\log_m(n) = \log_m(2) \lg(n) \text{ for all } n > 0. \]

Omit the logarithm base when using “Big-Oh”, “Big-Omega”, and “Big-Theta” notation: $\log_m n$ is $O(\log n)$, $\Omega(\log n)$, and $\Theta(\log n)$.

You will find later that the most efficient search for data in an ordered array has logarithmic time complexity.