
LC-3 and Assembly code (3)



 After tutorial 5, you have learnt 
◦ How to use some LC3 operations:
 And, add, not, etc.
◦ Load and store from/to memory
◦ Inputs and outputs using:
 GETC, IN, OUT, PUTS.
◦ Start learning about BR (nzp)
◦ Write a program to get user’s name

 This tutorial will cover:
◦ Answer to last exercise
◦ Learn how to use Subroutine JSR
◦ More exercises



 Create an example to echo an user input, i.e:
◦ Hi, what is your name?
◦ David Beckham
◦ Hi David Beckham, nice to meet you.

 Do exercises:
◦ Input a number from 0 to 9
◦ Print out all the number from 0 to that number
◦ Example:
 Input: 4
 Output: 0 1 2 3 4



 Steps need to complete:
◦ Get input as a character
◦ Turn that character to int by:
 take away offset (‘0’)
 N = ‘5’ – ‘0’
◦ Make a for loop to print:
 N times.
◦ Start from 
 ‘0’
◦ Use BR wisely

.orig x3000
ld r6, zero0 
not r6, r6
add r6, r6, 1
lea r0, inputString
puts
getc
out
add r1, r0, 0
add r2, r1, r6
lea r0, outputString
puts
ld r0, zero0;
forLoop
out
add r0, r0, 1;
add r2, r2, -1;
brn finishForLoop
brnzp forLoop
finishForLoop
halt
inputString .stringz "Input: "
outputString .stringz "\nOutput: "
zero0 .fill 48
.end



 First, the incremented PC is saved in R7. 
 This is the linkage back to the calling routine.
 Then the PC is loaded with the address of the 

first instruction of the subroutine, causing an 
unconditional jump to that address.

 Pc-offset has 11 bits: JSR can jump much 
further than BR (9 bits)



 Subroutine has a label
 Call: JSR Label
◦ R7 is updated with next 

address
◦ PC is updated to subroutine

 In subroutine 
◦ should save R7
◦ And load R7 when finish

 After subroutine finished, 
add operation RET
◦ This puts R7 value to PC

…
lea r0, outputString
puts
;call subroutine here
JSR subRoutinePrintLoop
Halt

inputString .stringz "Input: "
outputString .stringz "\nOutput: "
zero0 .fill 48
savR7 .fill 0

subRoutinePrintLoop
st r7, savR7
ld r0, zero0;
forLoop
out
add r0, r0, 1;
add r2, r2, -1;
brn finishForLoop
brnzp forLoop
finishForLoop
ld r7, savR7
ret
.end



 Write a program/subroutine to check for 
ODD/EVEN number. Make it loops many 
times, finishes when user enter nothing:
◦ Please enter a number: 1234
◦ Thanks, 1234 is an even number.
◦ Please enter a number: 245
◦ Thanks, 245 is an odd number.
◦ Please enter a number: 
◦ Thanks, see you again.
◦ ---- halt----



 Write a parseInt, and toString subroutines
 parseInt: 
◦ Change character from R0 in to integer value
◦ Store it back to R0

 toString: 
◦ Change integer value from R0 to character
◦ Store it back to R0

 This will be useful in your assignment


