
LC-3 and Assembly code (3)



 After tutorial 5, you have learnt 
◦ How to use some LC3 operations:
 And, add, not, etc.
◦ Load and store from/to memory
◦ Inputs and outputs using:
 GETC, IN, OUT, PUTS.
◦ Start learning about BR (nzp)
◦ Write a program to get user’s name

 This tutorial will cover:
◦ Answer to last exercise
◦ Learn how to use Subroutine JSR
◦ More exercises



 Create an example to echo an user input, i.e:
◦ Hi, what is your name?
◦ David Beckham
◦ Hi David Beckham, nice to meet you.

 Do exercises:
◦ Input a number from 0 to 9
◦ Print out all the number from 0 to that number
◦ Example:
 Input: 4
 Output: 0 1 2 3 4



 Steps need to complete:
◦ Get input as a character
◦ Turn that character to int by:
 take away offset (‘0’)
 N = ‘5’ – ‘0’
◦ Make a for loop to print:
 N times.
◦ Start from 
 ‘0’
◦ Use BR wisely

.orig x3000
ld r6, zero0 
not r6, r6
add r6, r6, 1
lea r0, inputString
puts
getc
out
add r1, r0, 0
add r2, r1, r6
lea r0, outputString
puts
ld r0, zero0;
forLoop
out
add r0, r0, 1;
add r2, r2, -1;
brn finishForLoop
brnzp forLoop
finishForLoop
halt
inputString .stringz "Input: "
outputString .stringz "\nOutput: "
zero0 .fill 48
.end



 First, the incremented PC is saved in R7. 
 This is the linkage back to the calling routine.
 Then the PC is loaded with the address of the 

first instruction of the subroutine, causing an 
unconditional jump to that address.

 Pc-offset has 11 bits: JSR can jump much 
further than BR (9 bits)



 Subroutine has a label
 Call: JSR Label
◦ R7 is updated with next 

address
◦ PC is updated to subroutine

 In subroutine 
◦ should save R7
◦ And load R7 when finish

 After subroutine finished, 
add operation RET
◦ This puts R7 value to PC

…
lea r0, outputString
puts
;call subroutine here
JSR subRoutinePrintLoop
Halt

inputString .stringz "Input: "
outputString .stringz "\nOutput: "
zero0 .fill 48
savR7 .fill 0

subRoutinePrintLoop
st r7, savR7
ld r0, zero0;
forLoop
out
add r0, r0, 1;
add r2, r2, -1;
brn finishForLoop
brnzp forLoop
finishForLoop
ld r7, savR7
ret
.end



 Write a program/subroutine to check for 
ODD/EVEN number. Make it loops many 
times, finishes when user enter nothing:
◦ Please enter a number: 1234
◦ Thanks, 1234 is an even number.
◦ Please enter a number: 245
◦ Thanks, 245 is an odd number.
◦ Please enter a number: 
◦ Thanks, see you again.
◦ ---- halt----



 Write a parseInt, and toString subroutines
 parseInt: 
◦ Change character from R0 in to integer value
◦ Store it back to R0

 toString: 
◦ Change integer value from R0 to character
◦ Store it back to R0

 This will be useful in your assignment


