
Alpha Assembly Language Guide

Randal E. Bryant
Carnegie Mellon University

Randy.Bryant@cs.cmu.edu

February 23, 1998

1. Overview

This document provides an overview of the Alpha instruction set and assembly language programming
conventions. More complete documentation is available from Digital Equipment Corporation [1, 2].

1.1. Data Types

The most notable feature of the Alpha is that it is a true 64-bit machine. All integer registers are 64 bits
wide. Manipulating 64-bit addresses and 64-bit integers is fully supported. In addition, there is support for
32-bit integers.

For historical reasons, (dating back to the PDP-11, a 16-bit machine), Digital has an idiosyncratic
terminology for word sizes. They consider a “word” to be 16-bits. Based on this, they refer to 32-bit
quantities as “long words” (the word size of the VAX.) They refer to 64-bit quantities as “quad words.” We
are mostly interested in long words and quad words.

Table 1 shows the machine representations used for the primitive data types of C. Note that variables
declared as int’s are stored as long (4-byte) words. If you want an 8-byte number, you need to declare it

C declaration Alpha Data Type Size (Bytes)
char Byte 1
short Word 2
int Long Word 4
unsigned Long Word 4
long int Quad Word 8
long unsigned Quad Word 8
char * Quad Word 8
float S Floating 4
double T Floating 8

Table 1: Sizes of standard data types

1

as long. All pointers (shown here as char *) are stored as 8-byte quad words. Don’t confuse the two
uses of the word “long” here—Alpha long words are 4 bytes, but C long int’s are 8.

Within the machine, all integer registers hold quad words. Long words are converted to quad words by
sign extension. That is, when converting from a long word lw to a quad word qw, the high order bit of lw
is replicated as the most significant 33 bits of qw.

1.2. Porting C Code to the Alpha

When porting C code originally developed on a 32-bit machine to an Alpha, the difference between the
sizes for pointers and int’s is a common source of nonportability. Lots of code has been written assuming
that you could store pointers in locations declared as int’s with no loss of information.

Another source of problems is with integer constants. By default, constants in C are assumed to be
int’s. If you want to make them long, you need to add the suffix “L”. Without that suffix, the number is
truncated to 32 bits and then sign extended to 64. Here are some examples illustrating this effect:

long int a = 0xFFFFFFFF7FFFFFFF; /* 0x000000007FFFFFFFL */
long int b = 0xFFFFFFFF7FFFFFFFL; /* 0xFFFFFFFF7FFFFFFFL */
long int c = 0x0000000080000000; /* 0xFFFFFFFF80000000L */
long int d = 0x0000000080000000L; /* 0x0000000080000000L */

Observe that values b and d are most likely what the programmer intended them to be. Values a and c, on
the other hand are not, because the “L” suffix was omitted. Their high order bits are either all 0’s or all 1’s
depending on bit 31 of the declared constant.

When you want to print out 8-byte integers with printf, you need to use the directive %ld, rather than
the standard %d. Similarly for printing in hexidecimal (%lx) and unsigned (%lu) formats.

2. Instructions

The Alpha instruction set is relatively simple. Arithmetic operations apply only to register data. Explicit
load and store operations are needed to move data between memory and registers. Conditional branches
can only test the relation between a register and the value zero.

2.1. Arithmetic Operations

Alpha supports integer operations for both 4-byte and 8-byte integers. The 8-byte versions treat the
operands as full precision values. The 4-byte versions mimic the behavior one would obtain by executing
the operations on a 32-bit machine. That is, they compute a value based on only the low order 4 bytes of
the operands to generate a 4-byte value. They then sign extend this value to obtain the 8-byte result.

Table 2 lists the arithmetic instructions having both 4-byte and 8-byte versions (note the suffixes “l”
and “q”.) Arithmetic operations have three operands: two source and one destination. The destination is

2

Long Word Quad Word Description Computation
addl addq Add c = a + b
s4addl s4addq Scaled by 4 Add c = 4*a + b
s8addl s8addq Scaled by 8 Add c = 8*a + b
subl subq Subtract c = a - b
s4subl s4subq Scaled by 4 Subtract c = 4*a - b
s8subl s8subq Scaled by 8 Subtract c = 4*a - b
mull mulq Multiply c = a * b
divl divq Divide c = a / b
reml remq Remainder c = a % b

Table 2: Arithmetic Operations. Each instruction has a (4-byte) word and a quad (8-byte) word form.

given as the rightmost operand, [in contrast to MIPS where the destination is given as the leftmost operand.]
Arithmetic operations can have one of two formats (shown for instruction addq):

addq Ra, Rb, Rc

addq Ra, Litb, Rc

where Ra, Rb, and Rc denote registers, and Litb denotes a “literal” constant between 0 and 255. The first two
operands denote the operation sources: the first must be from register Ra, the second can either be from a
register Rb or a literal value Litb. The third operand denotes the destination, which must always be a register
Rc.

Table 2 shows the effect of each of these instructions using C notation, with source operands a and b,
and destination operand c.

For operations requiring constants that don’t fit within the 8 bit limit of the standard operations, it is
common to use instructions lda (load address) and ldah (load address high). These are documented in
Section 2.4 describing load and store operations, even though they do not reference memory. Alternatively,
constants can be declared as part of the assembly program data and stored in memory. Load instructions
can then put these values into registers.

The scaled operations, having prefixes “s4” and “s8” scale the first source value by a factor of 4 or 8.
These are commonly used for array indexing.

The following are some examples of typical assembly code using arithmetic operations:

Add $1 and $2 and store in $3
addq $1, $2, $3
Register $8 points to integer array a
Register $17 contains index i
Want to set $9 to &a[i]:
s4addq $17, $8, $9

2.2. Comparison Operations

3

Instruction Description Computation
cmpeq Equality c = (a == b)
cmple Less than or equal c = (a <= b)
cmplt Less than c = (a < b)
cmpule Unsigned less than or equal c = (ua <= ub)
cmpult Unsigned less than c = (ua < ub)

Table 3: Comparison Operations

Instruction Description Effect
and And c = a & b
bic Bit Clear c = a & ˜b
bis Bit Set c = a | b
eqv Logical Equivalence c = ˜(a ˆ b)
xor Exclusive-Or c = a ˆ b
ornot Or-Not c = a | ˜b
sra Shift Right Arithmetic c = a >> (b % 64)
sll Shift Left c = a << (b % 64)
srl Shift Right Logical c = ua >> (b % 64)

Table 4: Bit-Level Operations

All comparisons operations operate on quad (8-byte) words. They have the same format as arithmetic
operations. They result in destination register Rc being set to 1 (true) or 0 (false). Table 3 lists the different
comparison possibilities. Note that the inequality tests have both signed and unsigned versions. These are
indicated with C syntax using operands a and b as signed values and ua and ub as unsigned values.

2.3. Bit-Level and Logical Operations

All bit-level and shift operations operate on quad words. They have the same format as arithmetic
instructions. Table 4 lists the different possibilities.

Left shift inserts 0’s into the low order bit positions. Logical right shift inserts 0’s into the high order bit
positions (used for unsigned operands). Arithmetic right shift copies the high order bit of operand a into
the new bit positions (used for signed operands).

Note that the shift amount must be between 0 and 63. Any larger number is reduced modulo 64 (by
simply masking off all but the low order 6 bits).

2.4. Loads and Stores

Load and store operations are used to transfer data between registers and memory. Separate instructions
are used to perform long (4-byte) word accesses and quad (8-byte) word accesses. In addition, instructions
lda and ldah have the format of a load operation, but they do not cause any memory references.

4

Instruction Description Bytes Accessed Effective Address Effect
ldl Load Long 4 EA � b�D a = *EA
ldq Load Quad 8 EA � b�D a = *EA
stl Store Long 4 EA � b�D *EA = a
stq Store Quad 8 EA � b�D *EA = a
lda Load Address 0 EA � b�D a = EA
ldah Load Address High 0 EA � b�D � 65536 a = EA

Table 5: Load and Store Operations

Load and store instructions have the following format, shown with instruction ldq (load quad word):

ldq Ra, Disp(Rb)

Operands Ra and Rb indicate registers, while Disp is a constant displacement ranging between -32,768
and +32,767. In most cases Ra indicates the destination (load) or source (store) of the data, while the
combination of Rb and Disp indicates the memory location to access. Note that load instructions are the
only Alpha instructions for which the destination is written on the left.

Table 5 describes the load and store operations. The column labeled “Effective Address” shows how
the contents of register Rb, denoted b, and the value of the displacement Disp, denoted D are combined to
generate an effective address EA. In most cases the values are simply added. For the ldah instruction, the
value D is scaled by a factor of 216

� 65536.

The column labeled “Effect” in Table 5 describes the behavior of the operation in C notation, where the
effective address EA is represented by a pointer variable EA, and register Ra is represented by variable a.
Load instructions read from the effective address and place the result in register Ra. The quad word version
ldq reads 8 bytes. The long word version ldl reads only 4 bytes and sign extends them to 8. Conversely,
the store operations write the value in register Ra to the memory locations indicated by the effective address.
The quad word version stq writes all 8 bytes, while the long word version writes only the low order 4 bytes
of Ra.

Instructions lda and ldah place the effective address in register Ra without accessing any memory
locations. They are useful for setting addresses, for performing pointer arithmetic, and even for performing
integer operations involving constants.

Set $1 to absolute address 0x000F0FF0
Use property that $31 is always 0
ldah $1, 15($31) # 0xF
lda $1, 4080($1) # 0x0FF0
Compute p++ for integer pointer p in register $2
lda $2, 4($2)
Compute x -= 17 for integer x in register $5
lda $5, -17($5)

2.5. Conditional Moves

5

Instruction Description Move Condition
cmoveq Conditional Move on Equal a == 0
cmovne Conditional Move on Not Equal a != 0
cmovgt Conditional Move on Greater Than a > 0
cmovge Conditional Move on Greater Than or Equal a >= 0
cmovlt Conditional Move on Less Than a < 0
cmovle Conditional Move on Less Than or Equal a <= 0
cmovlbc Conditional Move on Lower Bit Clear !(a & 0x1)
cmovlbs Conditional Move on Lower Bit Set a & 0x1

Table 6: Conditional Move Instructions

Form Description Actual Implementation
nop No operation bis $31, $31, $31
mov $1, $2 Move register bis $31, $1, $2
mov 17, $2 Move literal bis $31, 17, $2
sextl $1, $2 Move long word and sign-extend addl $31, $1, $2

Table 7: Derived Assembly Language Operations.

Conditional move operations provide a means of conditionally updating a register without using any
branch operations. In modern machines such as Alpha, this can yield much better performance than the
traditional technique of conditionally branching around the updating code.

These instructions have the same format as arithmetic operations, e.g., for instruction cmoveq:

cmoveq Ra, Rb, Rc

cmoveq Ra, Litb, Rc

Register Ra indicates the tested value, either register Rb or Libb indicates the source data, and register Rc
designates the move destination. Whether or not the move takes place is based on the result of comparing
register Ra to 0.

Table 6 lists the different conditional move instructions and the type of comparison performed. C
expression syntax is used, where variable a denotes the contents of register Ra. For example, the cmoveq
instruction is equivalent to the following C code:

if (a == 0)
c = b;

where variable b represents the source data and variable c represents the destination.

2.6. Derived Arithmetic Operations

In an attempt to make assembly language more readable, some commonly used patterns are given special
names. These typically involve degenerate cases, such as copying from one register to another. They exploit

6

Instruction Description Branch Condition
beq Branch on Equal a == 0
bne Branch on Not Equal a != 0
bgt Branch on Greater Than a > 0
bge Branch on Greater Than or Equal a >= 0
blt Branch on Less Than a < 0
ble Branch on Less Than or Equal a <= 0
blbc Branch on Lower Bit Clear !(a & 0x1)
blbs Branch on Lower Bit Set a & 0x1
br Branch 1
bsr Branch to Subroutine 1

Table 8: Branch Instructions

the fact that integer register$31 is always 0. Table 7 lists some typical cases and their translations into actual
Alpha instructions. No-op instructions nop are commonly used to pad code to meet specified alignment
requirements. Move instructions mov are used to transfer from one register to another, or to set a register to
a constant value. The sign extension operation sextl is the common method for converting from C int’s
to long int’s. For example, it is common to see instructions of the form sextl $16, $16 to convert
an integer argument passed in register $16 into the numerically equivalent quad word.

2.7. Transfers of Control

Transfers of control come in two flavors: branches and jumps. Most branches are conditional—whether
or not they are taken depends on the result of comparing an operand register to 0. They have format (shown
for beq):

beq Ra, Label

where Ra denotes the register being tested and Label is a label designating some position in the assembly
code. The assembler automatically translates this label into an offset relative to the program counter. The
upper part of Table 8 documents the different conditional branch types and the condition under which they
are taken. C syntax is used with variable a denoting the contents of register Ra.

As shown in the lower part of Table 8, two special branch forms: br and bsr branch unconditionally.
The unconditional branch br has the form:

br Label

That is, it simply designates the branch target. The branch to subroutine instruction has the same format as
other branches, but register argument Ra is used in a totally different way. It designates where the current
value of the program counter should be stored to allow the subroutine to return to the calling point. The
convention is to use register $26 for this purpose.

Jump instructions provide unconditional transfers of control with the target address specified by a register.
We will use three different forms:

7

S floating T floating Description Computation
adds addt Add c = a + b
subs subt Subtract c = a - b
muls mult Multiply c = a * b
divs divt Divide c = a / b

Table 9: Floating Point Arithmetic Operations. Each instruction has a single precision (S floating) and a
double precision (T floating) version.

Instruction Description Computation
cmpteq Equality c = (a == b) ? 2.0 : 0.0
cmptle Less than or equal c = (a <= b) ? 2.0 : 0.0
cmptlt Less than c = (a < b) ? 2.0 : 0.0

Table 10: Floating Point Comparison Operations

jmp (Rb) Hint

jsr Ra, (Rb) Hint

ret (Rb) Hint

In all cases Hint is optional information inserted by the compiler to help the processor predict the jump
target. The exact nature of these hints is not our concern.

The unconditional jump instruction jmp designates the jump target address in register Rb. The jump
to subroutine instruction jsr gives the target in register Rb and the register to store the current program
counter as argument Ra. The convention is to use register $26 for this purpose. The return instruction ret
is functionally equivalent to a jump—it gives the target address as register Rb. By conventional this will be
register $26, holding to program counter set by the preceding bsr or jsr.

2.8. Floating Point

Floating point instructions use a set of 32 floating point registers, named $f0 to $f31$. Four floating
point formats are supported, but we are only interested in two: the S floating format implementing IEEE
single precision and the T floating format implementing IEEE double precision. Each floating point register
is 8 bytes, but it can hold either a single precision or a double precision value.

In general, the floating point operations mirror the behavior of a subset of the integer operations. For
example, floating point arithmetic operations have just one format (shown for instruction addt):

addt Fa, Fb, Fc

where Fa and Fb indicate the two source registers, and Fc indicates the destination register. Table 9 lists the
common arithmetic operations, using C variables a and b to denote the source operands and c to denote the
destination.

8

Instruction Description Bytes Accessed Effective Address Effect
lds Load S floating 4 EA � b�D a = *EA
ldt Load T floating 8 EA � b�D a = *EA
sts Store S floating 4 EA � b�D *EA = a
stt Store T floating 8 EA � b�D *EA = a

Table 11: Floating Point Load and Store Operations

Instruction Description Move Condition
fcmoveq Conditional Move on Equal a == 0.0
fcmovne Conditional Move on Not Equal a != 0.0
fcmovgt Conditional Move on Greater Than a > 0.0
fcmovge Conditional Move on Greater Than or Equal a >= 0.0
fcmovlt Conditional Move on Less Than a < 0.0
fcmovle Conditional Move on Less Than or Equal a <= 0.0

Table 12: Conditional Move Instructions

Table 10 lists some of the floating point comparison operations. These set the destination register Fc to
2.0 if the comparison holds and to 0.0 if it does not.

Floating point load and store instructions have the same format as their integer counterparts, except that
they use floating point registers for data. For instruction lds, the format is:

lds Fa, Disp(Rb)

Operands Fa and Rb indicate registers, while Disp is a constant displacement ranging between -32,768 and
+32,767. Floating point register Fa indicates the destination (load) or source (store) of the data, while
the combination of Rb and Disp indicates the memory location to access. Table 11 lists the different
instructions, their effective address calculations (matching the calculations for integer loads and stores), and
the instruction effect.

As indicated in Table 12, there are also conditional moves for floating point values. These have the same
format as arithmetic operations (shown here for fcmoveq):

fcmoveq Fa, Fb, Fc

The value in register Fb is conditionally copied to register Fc based on the result of comparing Fa to 0.0.

Table 13 describes the conditional branch instructions for floating point. They have format similar to
the integer branch instructions (shown for fbeq):

fbeq Fa, Label

The decision of whether or not to branch is based on the result of comparing register Fa to 0.0.

9

Instruction Description Branch Condition
fbeq Branch on Equal a == 0.0
fbne Branch on Not Equal a != 0.0
fbgt Branch on Greater Than a > 0.0
fbge Branch on Greater Than or Equal a >= 0.0
fblt Branch on Less Than a < 0.0
fble Branch on Less Than or Equal a <= 0.0

Table 13: Floating Point Branch Instructions

Instruction From To
cvtqs Quad integer S floating
cvtqt Quad integer T floating
cvtsq S floating Quad integer
cvttq T floating Quad integer
cvtts T floating S floating
cvtst S floating T floating

Table 14: Floating Point Conversion Operations

Finally, as Table 14 indicates, there is a set of operations for converting between the different numeric
formats. Each of these has the same format (shown here for cvtqs):

cvtqs Fb, Fc

where Fb indicates the source register, and Fc indicates the destination register. Surprisingly, a floating point
registers is used even when the source or destination is a quad word integer. The 8 bytes of the floating
point register is simply interpreted as a two’s complement number in these cases. In fact, the only way to
transfer data between the floating point registers and integer registers is to store to memory and then load
them into load back to the other register set.

3. Programming Conventions

The Alpha hardware provides only low-level support for handling tasks such as setting up procedure calls,
maintaining the calling stack, and allocating space for data structures. Built on top of this low-level support
is a set of conventions that all compiler writers and assembly code generators are supposed to follow. Having
uniform conventions makes it possible to link together code generated from different sources, e.g., to have
your C code be able to use routines from the standard Unix libraries. In addition, it enables tools such as
debuggers, profilers, and performance monitors to work on code independent of how it was generated.

In this section we summarize some of the key features of the Alpha programming conventions. More
extensive documentation can be found in [1].

10

Register Name Software Name Use
$0 v0 Returned value from integer functions
$1–$8 t0–t7 Temporaries
$9–$14 s0–s5 Callee saved
$15 s6 Callee saved
$15 or $fp fp Frame pointer
$16–$21 a0–a5 Integer arguments
$22–$25 t8–t11 Temporaries
$26 ra Return address
$27 pv Address of current procedure
$27 t12 Temporary
$28 or $at AT Reserved for assembler
$29 or $gp gp Global pointer
$30 or $sp sp Stack pointer
$31 zero Always 0

Table 15: Integer Register Usage Conventions

3.1. Register Usage

Alpha has 32 integer registers, identified as $0 up to $31. As far as the hardware goes, only one of
these is special—register $31 is always equal to 0. Even if it is the destination of an operation, its value
never changes.

The remaining integer registers are partitioned into different groups with different uses, as shown in
Table 15. Registers can be identified in several ways: by their numbers $0–$31, by special names $fp,
$at, $gp, $sp, or by “software” names that are supposed to more clearly identify their usage conventions.
These software names are actually just macro definitions from file regdef.h. We will generally refer to
registers by number, since this is seen in the .s files generated by the C compiler.

Observe that some lines in the table refer to the same register, indicating overlapping usages. For
example, register $27 generally holds the starting address of the currently executing procedure, but it can
also be used just for temporary storage.

Register $0 is used to return an integer (or pointer) value to the calling procedure. Registers $1 to $8
and $22 to $25 can be used by a procedure for arbitrary temporary values. However, if procedure A calls
procedure B, there is no guarantee that the values in these registers will be unchanged when B returns back
to A. Registers $9 to $14 are “callee saved” registers. That means that any procedure using them must first
save the old values on the stack and then restore them before it returns. Thus, if A calls B, it can be assured
that these register values are unchanged when B returns back to A, either because B did not alter them, or
because B saved, altered, and later restored them.

Register $15 can be used as a “frame pointer,” indicating the start of the current stack frame. Most of
the time this is not done, however—all stack addressing is done relative to the stack pointer.

Registers $16 to $21 are used to pass integer (or pointer) arguments to a procedure. If needed, more
arguments can be passed on the program stack.

Register $26 generally holds the address to which the currently-executing procedure should return.

11

Register Name Use
$f0 Returned value from floating point functions
$f1 Returned imaginary value from complex functions
$f2–$f9 Callee saved
$f10–$f15 Temporaries
$f16–$f21 Floating point arguments
$f22–$f30 Temporaries
$f31 Always 0.0

Table 16: Floating Point Register Usage Conventions

Register $27 generally points to the currently executing procedure. The typical way for procedure A to call
procedure B is to load the starting address of B into register $27 and then execute the instruction:

jsr $26, ($27)

Procedure B then returns to A by executing the instruction

ret ($26)

Register $29 is used as a “global pointer,” indicating a region in memory where global data and linkage
information is maintained.

Register $30 is used as the “stack pointer,” indicating the address of the top element of the stack. The
stack grows toward lower addresses.

Table 16 indicates the usage conventions for the floating point registers. Like the integer registers,
only floating point register $f31 has any special hardware-implemented features—it is always equal to
0.0. The remainder are partitioned by convention into return values ($f0–$f1), callee saved ($f2–$f9),
temporaries ($f10–$f15 and $f22–$f30), and procedure arguments ($f16–$f21).

3.2. Stack Frames

The program stack is used as the working storage for procedures. Each procedure requiring local storage to
hold local data or linkage information allocates a stack frame upon entry and deallocates it before returning.

Not all procedures require stack space. As long as a procedure does not call any other procedures and
can fit all the data it requires in registers, it need not allocate a frame.

Figure 1 shows the general form of a stack frame. Note that the stack grows toward lower addresses,
so the top of the stack is actually the lowest address. We will draw the frame with the “top” of the stack
on the bottom of the figure, as is done in our textbook. The figure illustrates the most general stack frame
form—not all procedures require all parts.

We will refer to the parts of the frame relative to the currently active procedure, i.e., the one who’s
frame is at the top of the stack. If this procedure had more arguments than could be passed in the integer or

12

Passed Arg. n

Saved Reg. 1

Saved Reg. 2

Saved Reg. m

•
•
•

Locals
and

Temporaries

Argument
Build
Area

Passed Arg. 7

•
•
•

Stack Pointer

Frame Pointer

Current
Frame

Caller’s
Frame

Increasing
Address

Stack Bottom

•
•
•

Stack Top

Figure 1: Stack Frame Structure

13

floating point registers (e.g., if it had more than 6 integer or pointer arguments), the remaining arguments
would be on the stack as part of the caller’s frame. The “frame pointer” indicates the top of the caller’s
frame. Typically, this frame pointer is “virtual”, meaning that it’s value is defined in terms of some offset
relative to the stack pointer. The first portion of the frame holds any local or temporary data that cannot be
held in registers. This will typically include local arrays and any local variable to which a pointer must be
generated. The next part of the frame provides storage for any registers that the procedure needs to save.
Typically this includes the return address pointer (stored first) and the old values of any callee save registers
to be used by the current procedure. Finally, the top part of the frame consists of temporary space to be used
in building the arguments to procedures to be called by the current procedure. This area is required only if
a procedure is called having more arguments than can be passed through registers.

A final requirement is that the frame size must be a multiple of 16 bytes. This requirement is satisfied
by padding the region for locals and temporaries as needed.

References

[1] Alpha Assembly Programmer’s Guide, Digital Equipment Corporation, 1996. Adobe acrobat version
(alpha-asm.pdf) and Postscript version (alpha-asm.ps) in directory:

/afs/cs.cmu.edu/academic/class/15347-s98/public/doc/

[2] R. L. Sites, R. T. Witek, Alpha AXP Architecture, 2nd edition, Digital Press, 1995.

14

