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a p p e n d i x b

From LC-3 to x86

As you know, the ISA of the LC-3 explicitly specifies the interface between what
the LC-3 machine language programmer or LC-3 compilers produce and what
a microarchitecture of the LC-3 can accept and process. Among those things
specified are the address space and addressability of memory, the number and
size of the registers, the format of the instructions, the opcodes, the data types
that are the encodings used to represent information, and the addressing modes
that are available for determining the location of an operand.

The ISA of the microprocessor in your PC also specifies an interface between
the compilers and the microarchitecture. However, in the case of the PC, the ISA
is not the LC-3. Rather it is the x86. Intel introduced the first member of this ISA
in 1979. It was called the 8086, and the “normal” size of the addresses and data
elements it processed was 16 bits. The typical size of addresses and data today is
32 bits. From the 8086 to the present time, Intel has continued implementations
of this ISA, the 80286 (in 1982), 386 (in 1985), 486 (in 1989), Pentium (in
1992), Pentium Pro (in 1995), Pentium II (in 1997), Pentium III (in 1999), and
Pentium IV (in 2001).

The ISA of the x86 is much more complicated than that of the LC-3. There
are more opcodes, more data types, more addressing modes, a more complicated
memory structure, and a more complicated encoding of instructions into 0s and
1s. However, fundamentally, they have the same basic ingredients.

You have spent a good deal of time understanding computing within the
context of the LC-3. Some may feel that it would be good to learn about a real
ISA. One way to do that would be to have some company such as Intel mass-
produce LC-3s, some other company like Dell use them in their PCs, and a third
company such as Microsoft compile Windows NT into the ISA of the LC-3. An
easier way to introduce you to a real ISA is by way of this appendix.

We present here elements of the x86, a very complicated ISA. We do so in
spite of its complexity, because it is the most pervasive of all ISAs available in
the marketplace.

We make no attempt to provide a complete specification of the x86 ISA.
That would require a whole book by itself, and to appreciate it, a deeper under-
standing of operating systems, compilers, and computer systems than we think
is reasonable at this point in your education. If one wants a complete treatment,
we recommend Intel Architecture Software Developer’s Manual, volumes 1, 2,
and 3, published by Intel Corporation, 1997. In this appendix, we restrict our-
selves to some of the characteristics that are relevant to application programs.
Our intent is to give you a sense of the richness of the x86 ISA. We introduce
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these characteristics within the context of the LC-3 ISA, an ISA with which you
are familiar.

B.1 LC-3 Features and Corresponding x86 Features
B.1.1 Instruction Set
An instruction set is made up of instructions, each of which has an opcode and
zero or more operands. The number of operands depends on how many are needed
by the corresponding opcode. Each operand is a data element and is encoded
according to its data type. The location of an operand is determined by evaluating
its addressing mode.

The LC-3 instruction set contains one data type, 15 opcodes, and three
addressing modes: PC-relative (LD, ST), indirect (LDI, STI), and register-plus-
offset (LDR, STR). The x86 instruction set has more than a dozen data types,
over a hundred opcodes, and more than two dozen addressing modes (depending
on how you count).

Data Types

Recall that a data type is a representation of information such that the ISA provides
opcodes that operate on information that is encoded in that representation.

The LC-3 supports only one data type, 16-bit 2’s-complement integers. This is
not enough for efficient processing in the real world. Scientific applications need
numbers that are represented by the floating point data type. Multimedia applica-
tions require information that is represented by a different data type. Commercial
applications written years ago, but still active today, require an additional data
type, referred to as packed decimal. Some applications require a greater range of
values and a greater precision of each value than other applications.

As a result of all these requirements, the x86 is designed with instructions that
operate on (for example) 8-bit integers, 16-bit integers, and 32-bit integers, 32-
bit floating point numbers and 64-bit floating point numbers, 64-bit multimedia
values and 128-bit multimedia values. Figure B.1 shows some of the data types
present in the x86 ISA.

Opcodes

The LC-3 comprises 15 opcodes; the x86 instruction set comprises more than
200 opcodes. Recall that the three basic instruction types are operates, data
movement, and control. Operates process information, data movement opcodes
move information from one place to another (including input and output), and
control opcodes change the flow of the instruction stream.

In addition, we should add a fourth category to handle functions that must
be performed in the real world because a user program runs in the context of an
operating system that is controlling a computer system, rather than in isolation.
These instructions deal with computer security, system management, hardware
performance monitoring, and various other issues that are beyond what the typical
application program pays attention to. We will ignore those instructions in this
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appendix, but please note that they do exist, and you will see them as your studies
progress.

Here we will concentrate on the three basic instruction types: operates, data
movement, and control.

Operates The LC-3 has three operate instructions: ADD, AND, and NOT. The
ADD opcode is the only LC-3 opcode that performs arithmetic. If one wants to
subtract, one obtains the negative of an operand and then adds. If one wants
to multiply, one can write a program with a loop to ADD a number some specified
number of times. However, this is too time-consuming for a real microprocessor.
So the x86 has separate SUB and MUL, as well as DIV, INC (increment), DEC
(decrement), and ADC (add with carry), to name a few.

A useful feature of an ISA is to extend the size of the integers on which it can
operate. To do this one writes a program to operate on such long integers. The
ADC opcode, which adds two operands plus the carry from the previous add, is
a very useful opcode for extending the size of integers.

In addition, the x86 has, for each data type, its own set of opcodes to operate
on that data type. For example, multimedia instructions (collectively called the
MMX instructions) often require saturating arithmetic, which is very different
from the arithmetic we are used to. PADDS is an opcode that adds two operands
with saturating arithmetic.

Saturating arithmetic can be explained as follows: Suppose we represent the
degree of grayness of an element in a figure with a digit from 0 to 9, where 0 is
white and 9 is black. Suppose we want to add some darkness to an existing value
of grayness of that figure. An element could start out with a grayness value of
7, and we might wish to add a 5 worth of darkness to it. In normal arithmetic,
7 + 5 is 2 (with a carry), which is lighter than either 7 or 5. Something is wrong!
With saturating arithmetic, when we reach 9, we stay there—we do not generate
a carry. So, for example, 7 + 5 = 9 and 9 + n = 9. Saturating arithmetic is a
different kind of arithmetic, and the x86 has opcodes (MMX instructions) that
perform this type of arithmetic.

Scientific applications require opcodes that operate on values represented
in the floating point data type. FADD, FMUL, FSIN, FSQRT are examples of
floating point opcodes in the x86 ISA.

The AND and NOT opcodes are the only LC-3 opcodes that perform logical
functions. One can construct any logical expression using these two opcodes.
However, as is the case with arithmetic, this also is too time-consuming. The x86
has in addition separate OR, XOR, AND-NOT, and separate logical operators for
different data types.

Furthermore, the x86 has a number of other operate instructions that set and
clear registers, convert a value from one data type to another, shift or rotate the
bits of a data element, and so on.

Table B.1 lists some of the operate opcodes in the x86 instruction set.

Data Movement The LC-3 has seven data movement opcodes: LD, LDI, ST,
STI, LDR, STR, and LEA. Except for LEA, which loads an address into a register,
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Table B.1 Operate Instructions, x86 ISA

Instruction Explanation

ADC x, y x, y, and the carry retained from the last relevant operation (in CF) are added and
the result stored in x.

MUL x The value in EAX is multiplied by x, and the result is stored in the 64-bit register
formed by EDX, EAX.

SAR x x is arithmetic right is shifted n bits, and the result is stored in x. The value of n can
be 1, an immediate operand, or the count in the CL register.

XOR x, y A bit-wise exclusive-OR is performed on x, y and the result is stored in x.
DAA After adding two packed decimal numbers, AL contains two BCD values, which may

be incorrect due to propagation of the carry bit after 15, rather than after 9. DAA
corrects the two BCD digits in AL.

FSIN The top of the stack (call it x) is popped. The sin(x) is computed and pushed onto the
stack.

FADD The top two elements on the stack are popped, added, and their result pushed onto
the stack.

PANDN x, y A bit-wise AND-NOT operation is performed on MMX values x, y, and the result is
stored in x.

PADDS x, y Saturating addition is performed on packed MMX values x, y, and the result is stored
in x.

they copy information between memory (and memory-mapped device registers)
and the eight general purpose registers, R0 to R7.

The x86 has, in addition to these, many other data movement opcodes. XCHG
can swap the contents of two locations. PUSHA pushes all eight general purpose
registers onto the stack. IN and OUT move data between input and output ports
and the processor. CMOVcc copies a value from one location to another only if
a previously computed condition is true.

Table B.2 lists some of the data movement opcodes in the x86 instruction set.

Table B.2 Data Movement Instructions, x86 ISA

Instruction Explanation

MOV x, y The value stored in y is copied into x.
XCHG x, y The values stored in x and y are swapped.
PUSHA All the registers are pushed onto the top of the stack.
MOVS The element in the DS segment pointed to by ESI is copied into the location in the ES

segment pointed to by EDI. After the copy has been performed, ESI and EDI are
both incremented.

REP MOVS Perform the MOVS. Then decrement ECX. Repeat this instruction until ECX = 0.
(This allows a string to be copied in a single instruction, after initializing ECX.)

LODS The element in the DS segment pointed to by ESI is loaded into EAX, and ESI is
incremented or decremented, according to the value of the DF flag.

INS Data from the I/O port specified by the DX register is loaded into the EAX register (or
AX or AL, if the size of the data is 16 bits or 8 bits, respectively).

CMOVZ x, y If ZF = 1, the value stored in y is copied into x. If ZF = 0, the instruction acts like a
no-op.

LEA x, y The address y is stored in x. This is very much like the LC-3 instruction of the same
name.
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Table B.3 Control Instructions, x86 ISA

Instruction Explanation

JMP x IP is loaded with the address x. This is very much like the LC-3 instruction of the same
name.

CALL x The IP is pushed onto the stack, and a new IP is loaded with x.
RET The stack is popped, and the value popped is loaded into IP.
LOOP x ECX is decremented. If ECX is not 0 and ZF = 1, the IP is loaded with x.
INT n The value n is an index into a table of descriptors that specify operating system service

routines. The end result of this instruction is that IP is loaded with the starting result
of the corresponding service routine. This is very much like the TRAP instruction in
the LC-3.

Control The LC-3 has five control opcodes: BR, JSR/JSRR, JMP, RTI, and
TRAP. x86 has all these and more. Table B.3 lists some of the control opcodes in
the x86 instruction set.

Two Address versus Three Address

The LC-3 is a three-address ISA. This description reflects the number of operands
explicitly specified by the ADD instruction. An add operation requires two source
operands (the numbers to be added) and one destination operand, to store the
result. In the LC-3, all three must be specified explicitly, hence the name three-
address ISA.

Even if the same location is to be used both for one of the sources and for
the destination, the three addresses are all specified. For example, the LC-3 ADD
R1,R1,R2 identifies R1 as both a source and the destination.

The x86 is a two-address ISA. Since the add operation needs three operands,
the location of one of the sources must also be used to store the result. For example,
the corresponding ADD instruction in the x86 ISA would be ADD EAX, EBX.
(EAX and EBX are names of two of the eight general purpose registers.) EAX
and EBX are the sources, and EAX is the destination.

Since the result of the operate is stored in the location that originally contained
one of the sources, that source operand is no longer available after that instruction
is executed. If that source operand is needed later, it must be saved before the
operate instruction is executed.

Memory Operands

A major difference between the LC-3 instruction set and the x86 instruction set
is the restriction on where operate instructions can get their operands. An LC-3
operate instruction must obtain its source operands from registers and write the
result to a destination register. An x86 instruction, on the other hand, can obtain
one of its sources from memory and/or write its result to memory. In other words,
the x86 can read a value from memory, operate on that value, and store the result
in memory all in a single instruction. The LC-3 cannot.

The LC-3 program requires a separate load instruction to read the value from
memory before operating on it, and a separate store instruction to write the result
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in memory after the operate instruction. An ISA, like the LC-3, that has this
restriction is called a load-store ISA. The x86 is not a load-store ISA.

B.1.2 Memory
The LC-3 memory consists of 216 locations, each containing 16 bits of informa-
tion. We say the LC-3 has a 16-bit address space, since one can uniquely address
its 216 locations with 16 bits of address. We say the LC-3 has an addressability
of 16 bits, since each memory location contains 16 bits of information.

The x86 memory has a 32-bit address space and an addressability of eight bits.
Since one byte contains eight bits, we say the x86 memory is byte addressable.
Since each location contains only eight bits, four contiguous locations in memory
are needed to store a 32-bit data element, say locations X, X+1, X+2, and X+3.
We designate X as the address of the 32-bit data element. In actuality, X only
contains bits [7:0], X+1 contains bits [15:8], X+2 contains bits [23:16], and
X+3 contains bits [31:24] of the 32-bit value.

One can determine an LC-3 memory location by simply obtaining its address
from the instruction, using one of the three addressing modes available in the
instruction set. An x86 instruction has available to it more than two dozen address-
ing modes that it can use to specify the memory address of an operand. We examine
the addressing modes in Section B.2 in the context of the x86 instruction format.

In addition to the larger number of addressing modes, the x86 contains a
mechanism called segmentation that provides a measure of protection against
unwanted accesses to particular memory addresses. The address produced by an
instruction’s addressing mode, rather than being an address in its own right, is
used as an address within a segment of memory. Access to that memory location
must take into account the segment register that controls access to that segment.
The details of how the protection mechanism works will have to wait for later in
your studies.

However, Figure B.2 does show how an address is calculated for the
register+offset addressing mode, both for the LC-3, and for the x86, with segmen-
tation. In both cases, the opcode is to move data from memory to a general purpose
register. The LC-3 uses the LDR instruction. The x86 uses the MOV instruction.
In the case of the x86, the address calculated is in the DS segment, which is
accessed via the DS register. That access is done through a 16-bit selector, which
indexes into a segment descriptor table, yielding the segment descriptor for that
segment. The segment descriptor contains a segment base register and a segment
limit register, and the protection information. The memory address obtained from
the addressing mode of the instruction is added to the segment base register to
provide the actual memory address, as shown in Figure B.2.

B.1.3 Internal State
The internal state of the LC-3 consists of eight 16-bit general purpose registers,
R0 to R7, a 16-bit PC, and a 16-bit PSR that specifies the privilege mode, priority,
and three 1-bit condition codes (N, Z, and P). The user-visible internal state of
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LDR

LC-3 instruction:

Register file

Base Offset

ADD

SEXT

Memory

Address

6

16

0

216 – 1

16

3

MOV

x86 instruction:

Register file

Mod R/M 4-byte displacement

ADD

Memory

Segment
descriptor table

Segment
descriptor

Segment base register

Segment limit register

GDTR

DS

32

0

232 – 1

32

12

3

ADD

Figure B.2 Register+offset addressing mode in LC-3 and x86 ISAs
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the x86 consists of application-visible registers, an Instruction pointer, a FLAGS
register, and the segment registers.

Application-Visible Registers

Figure B.3 shows some of the application-visible registers in the x86 ISA.
Corresponding to R0 through R7, the x86 also has eight general purpose

registers, EAX, EBX, ECX, EDX, ESP, EBP, ECI, and EDI. Each contains 32
bits, reflecting the normal size of its operands. However, since the x86 provides
opcodes that process 16-bit operands and 8-bit operands, it should also provide 16-
bit and 8-bit registers. The ISA identifies the low 16 bits of each 32-bit register as a
16-bit register and the low 8 bits and the high 8 bits of four of the registers as
8-bit registers for the use of instructions that require those smaller operands.
So, for example, AX, BX, to DI are 16-bit registers, and AL, BL, CL, DL, AH,
BH, CH, and DH are 8-bit registers.

The x86 also provides 64-bit registers for storing values needed for floating
point and MMX computations. They are, respectively, FP0 through FP7 and MM0
through MM7.

31 0

General Purpose Registers:

AX

DX

CX

BX

BP

CI

DI

SP

EAX

EDX

ECX

EBX

EBP

ECI

EDI

ESP

AL = EAX [7:0]

DL = EDX [7:0]

CL = ECX [7:0]

BL = EBX [7:0]

AH = EAX [15:8]

DH = EDX [15:8]

CH = ECX [15:8]

BH = EBX [15:8]

63 0

Floating Point Registers:

FP0

FP1

FP2

FP3

FP4

FP5

FP6

FP7

63 0

Multimedia Registers:

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

Figure B.3 Some x86 application-visible registers
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System Registers

The LC-3 has two system-level registers—the PC and the PSR. The user-visible
x86 has these and more.

Figure B.4 shows some of the user-visible system registers in the x86 ISA.

Instruction Pointer

The x86 has the equivalent of the LC-3’s 16-bit program counter. The x86 calls
it an instruction pointer (IP). Since the address space of the x86 is 32 bits, IP is
a 32-bit register.

FLAGS Register

Corresponding to the LC-3’s N, Z, and P condition codes, the x86 has a 1-bit SF
(sign flag) register and a 1-bit ZF (zero flag) register. SF and ZF provide exactly
the same functions as the N and Z condition codes of the LC-3. The x86 does
not have the equivalent of the LC-3’s P condition code. In fact, the P condition
code is redundant, since if one knows the values of N and Z, one knows the value
of P. We included it in the LC-3 ISA anyway, for the convenience of assembly
language programmers and compiler writers.

The x86 collects other 1-bit values in addition to N and Z. These 1-bit values
(called flags) are contained in a 16-bit register called FLAGS. Several of these
flags are discussed in the following paragraphs.

The CF flag stores the carry produced by the last relevant operation that
generated a carry. As we said earlier, together with the ADC instruction, CF facil-
itates the generation of procedures, which allows the software to deal with larger
integers than the ISA supports.

The OF flag stores an overflow condition if the last relevant operate generated
a value too large to store in the available number of bits. Recall the discussion of
overflow in Section 2.5.3.

15 0

PRIV OF DF IF TF SF ZF AF PF CFFLAGS Register:

31 0

Instruction Pointer (EIP):

15 0

CSSegment Registers (Selectors):

SS

DS

ES

FS

GS

Figure B.4 x86 system registers
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The DF flag indicates the direction in which string operations are to process
strings. If DF = 0, the string is processed from the high-address byte down (i.e.,
the pointer keeping track of the element in the string to be processed next is
decremented). If DF = 1, the string is processed from the low-address byte up
(i.e., the string pointer is incremented).

Two flags not usually considered as part of the application state are the IF
(interrupt) flag and the TF (trap) flag. Both correspond to functions with which
you are familiar.

IF is very similar to the IE (interrupt enable) bit in the KBSR and DSR,
discussed in Section 8.5. If IF = 1, the processor can recognize external interrupts
(like keyboard input, for example). If IF = 0, these external interrupts have no
effect on the process that is executing. We say the interrupts are disabled.

TF is very similar to single-step mode in the LC-3 simulator, only in this case
it is part of the ISA. If TF = 1, the processor halts after every instruction so the
state of the system can be examined. If TF = 0, the processor ignores the trap
and processes the next instruction.

Segment Registers

When operating in its preferred operating mode (called protected mode), the
address calculated by the instruction is really an offset from the starting address
of a segment, which is specified by some segment base register. These segment
base registers are part of their corresponding data segment descriptors, which
are contained in the segment descriptor table. At each instant of time, six of
these segments are active. They are called, respectively, the code segment (CS),
stack segment (SS), and four data segments (DS, ES, FS, and GS). The six active
segments are accessed via their corresponding segment registers shown in Figure
B.4, which contain pointers to their respective segment descriptors.

B.2 The Format and Specification of x86 Instructions
The LC-3 instruction is a 16-bit instruction. Bits [15:12] always contain the
opcode; the remaining 12 bits of each instruction are used to support the needs
of that opcode.

The length of an x86 instruction is not fixed. It consists of a variable num-
ber of bytes, depending on the needs of that instruction. A lot of information
can be packed into one x86 instruction. Figure B.5 shows the format of an

Prefixes
From 0
to 4
1-byte
prefixes
(see Table B.4)

Mod

(see Table B.5) (see Table B.6)

Reg R/M

Opcode Mod R/M SIB Displacement Immediate

Address displace-
ment of 0, 1, 2, or 
4 bytes, specified 
by ModR/M

Immediate data
of  0, 1, 2, or 4
bytes, specified
by the opcode

Scale Index Base

Figure B.5 Format of the x86 instruction
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The two key parts of an x86 instruction are the opcode and, where necessary,
the ModR/M byte. The opcode specifies the operation the instruction is to perform.
The ModR/M byte specifies how to obtain the operands it needs. The ModR/M
byte specifies one of several addressing modes, some of which require the use
of registers and a one-, two-, or four-byte displacement. The register information
is encoded in a SIB byte. Both the SIB byte and the displacement (if one is
necessary) follow the ModR/M byte in the instruction.

Some opcodes specify an immediate operand and also specify the number
of bytes of the instruction that is used to store that immediate information. The
immediate value (when one is specified) is the last element of the instruction.

Finally, the instruction assumes certain default information with respect to
the semantics of an instruction, such as address size, operand size, segment to be
used, and so forth. The instruction can change this default information by means
of one or more prefixes, which are located at the beginning of the instruction.

Each part of an x86 instruction is discussed in more detail in Sections B.2.1
through B.2.6.

B.2.1 Prefix
Prefixes provide additional information that is used to process the instruction.
There are four classes of prefix information, and each instruction can have from
zero to four prefixes, depending on its needs. Fundamentally, a prefix overrides
the usual interpretation of the instruction.

The four classes of prefixes are lock and repeat, segment override, operand
override, and address override. Table B.4 describes the four types of prefixes.

Table B.4 Prefixes, x86 ISA

Repeat/Lock
xF0 (LOCK) This prefix guarantees that the instruction will have exclusive use of

all shared memory until the instruction completes execution.

xF2, xF3
(REP/REPE/REPNE)

This prefix allows the instruction (a string instruction) to be
repeated some specified number of times. The iteration count is
specified by ECX. The instruction is also terminated on the
occurrence of a specified value of ZF.

Segment override
x2E(CS), x36(SS),
x3E(DS), x26(ES),
x64(FS), x65(GS)

This prefix causes the memory access to use the specified segment,
instead of the default segment expected for that instruction.

Operand size override
x66 This prefix changes the size of data expected for this instruction.

That is, instructions expecting 32-bit data elements use 16-bit data
elements. And instructions expecting 16-bit data elements use
32-bit data elements.

Address size override
x67 This prefix changes the size of operand addresses expected for this

instruction. That is, instructions expecting a 32-bit address use
16-bit addresses. And instructions expecting 16-bit addresses use
32-bit addresses.

x86 instruction. The instruction consists of anywhere from 1 to 15 bytes, as
shown in the figure.
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B.2.2 Opcode
The opcode byte (or bytes—some opcodes are represented by two bytes) specifies
a large amount of information about the needs of that instruction. The opcode byte
(or bytes) specifies, among other things, the operation to be performed, whether
the operands are to be obtained from memory or from registers, the size of the
operands, whether or not one of the source operands is an immediate value in the
instruction, and if so, the size of that immediate operand.

Some opcodes are formed by combining the opcode byte with bits [5:3]
of the ModR/M byte, if those bits are not needed to provide addressing mode
information. The ModR/M byte is described in Section B.2.3.

B.2.3 ModR/M Byte
The ModR/M byte, shown in Figure B.5, provides addressing mode information
for two operands, when necessary, or for one operand, if that is all that is needed.
If two operands are needed, one may be in memory, the other in a register, or both
may be in registers. If one operand is needed, it can be either in a register or in
memory. The ModR/M byte supports all cases.

The ModR/M byte is essentially partitioned into two parts. The first part
consists of bits [7:6] and bits [2:0]. The second part consists of bits [5:3].

If bits [7:6] = 00, 01, or 10, the first part specifies the addressing mode
of a memory operand, and the combined five bits ([7:6],[2:0]) identify which
addressing mode. If bits [7:6] = 11, there is no memory operand, and bits [2:0]
specify a register operand.

Bits [5:3] specify the register number of the other operand, if the opcode
requires two operands. If the opcode only requires one operand, bits [5:3] are
available as a subopcode to differentiate among eight opcodes that have the same
opcode byte, as described in Section B.2.2.

Table B.5 lists some of the interpretations of the ModR/M byte.

Table B.5 ModR/M Byte, Examples

Mod Reg R/M Eff. Addr. Reg Explanation

00 011 000 [EAX] EBX EAX contains the address of the memory operand.
EBX contains the register operand.

01 010 000 disp8[EAX] EDX Memory operand’s address is obtained by adding the
displacement byte of the instruction to the contents
of EAX. EDX contains the register operand.

10 000 100 disp32[-][-] EAX Memory operand’s address is obtained by adding the
four-byte (32 bits) displacement of the instruction to
an address that will need an SIB byte to compute.
(See Section B.2.4 for the discussion of the SIB
byte.) EAX contains the register operand.

11 001 110 ESI ECX If the opcode requires two operands, both are in
registers (ESI and ECX). If the opcode requires one
operand, it is in ESI. In that case, 001 (bits [5:3])
are part of the opcode.
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Table B.6 SIB Byte, Examples

Scale Index Base Computation Explanation

00 011 000 EBX+EAX The contents of EBX are added to the contents of EAX.
The result is added to whatever is specified by the
ModR/M byte.

01 000 001 2 · EAX + ECX The contents of EAX are multiplied by 2, and the result
is added to the contents of ECX. This is then added to
whatever is specified by the ModR/M byte.

01 100 001 ECX The contents of ECX are added to whatever is specified
by the ModR/M byte.

10 110 010 4 · ESI + EDX The contents of ESI are multiplied by 4, and the result
is added to the contents of EDX. This is then added to
whatever is specified by the ModR/M byte.

B.2.4 SIB Byte
If the opcode specifies that an operand is to be obtained from memory, the Mod-
R/M byte specifies the addressing mode, that is, the information that is needed
to calculate the address of that operand. Some addressing modes require more
information than can be specified by the ModR/M byte alone. Those operand
specifiers (see example 3 in Table B.5) specify the inclusion of an SIB byte in the
instruction. The SIB byte (for scaled-index-base), shown in Figure B.5, provides
scaling information and identifies which register is to be used as an index register
and/or which register is to be used as a base register. Taken together, the SIB byte
computes scale · index + base, where base and/or index can be zero, and scale
can be 1. Table B.6 lists some of the interpretations of the SIB byte.

B.2.5 Displacement
If the ModR/M byte specifies that the address calculation requires a displacement,
the displacement (one, two, or four bytes) is contained in the instruction. The
opcode and/or ModR/M byte specifies the size of the displacement.

Figure B.6 shows the addressing mode calculation for the source operand if
the instruction is as shown. The prefix x26 overrides the segment register and
specifies using the ES segment. The ModR/M and SIB bytes specify that a four-
byte displacement is to be added to the base register ECX + the index register
EBX after its contents are multiplied by 4.

B.2.6 Immediate
Recall that the LC-3 allowed small immediate values to be present in the instruc-
tion, by setting inst[5:5] to 1. The x86 also permits immediate values in the
instruction. As stated previously, if the opcode specifies that a source operand is
an immediate value in the instruction, it also specifies the number of bytes of the
instruction used to represent the operand. That is, an immediate can be represented
in the instruction with one, two, or four bytes. Since the opcode also specifies the
size of the operand, immediate values that can be stored in fewer bytes than the
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00100110 00000011 10000100

MULTIPLY

ADD

4

10011001

EBX

ECX

32 bits
Prefix Opcode ModR/M SIB

ES
override

ADD
r32, m32

disp32 [] []
EAX

EBX * 4 + ECX

Displacement

ES segment
Base register

disp
32 bits

Address

Figure B.6 Addressing mode calculation for Base+ScaledIndes+disp32

operand size are first sign-extended to their full size before being operated on.
Figure B.7 shows the use of the immediate operand with the ADD instruction.
The example is ADD EAX, $5. We are very familiar with the corresponding LC-3
instruction: ADD R0,R0,#5.

10000011 11000000 00000101

+5

SEXT

Opcode ModR/M imm8

ADD
r/m 32, imm8 EAX 5

EAX

ADD

EAX

8

32

Figure B.7 Example x86 instruction: ADD EAX, $5
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B.3 An Example
We conclude this appendix with an example. The problem is one we have dealt
with extensively in Chapter 14. Given an input character string consisting of
text, numbers, and punctuation, write a C program to convert all the lowercase
letters to uppercase. Figure B.8 shows a C program that solves this problem.
Figure B.9 shows the annotated LC-3 assembly language code that a C compiler
would generate. Figure B.10 shows the corresponding annotated x86 assembly
language code. For readability, we show assembly language representations of
the LC-3 and x86 programs rather than the machine code.

#include <stdio.h>

void UpcaseString(char inputString[]);

main ()
{

char string[8];

scanf("%s", string);
UpcaseString(string);

}

void UpcaseString(char inputString[])
{
int i = 0;

while(inputString[i]) {
if ((’a’ <= inputString[i]) && (inputString[i] <= ’z’))
inputString[i] = inputString[i] - (’a’ - ’A’);

i++;
}

}

Figure B.8 C source code for the upper-/lowercase program
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; uppercase: converts lower- to uppercase
.ORIG x3000
LEA R6, STACK

MAIN ADD R1, R6, #3
READCHAR IN ; read in input string: scanf

OUT
STR R0, R1, #0
ADD R1, R1, #1
ADD R2, R0, x-A
BRnp READCHAR
ADD R1, R1, #-1
STR R2, R1, #0 ; put in NULL char to mark the "end"
ADD R1, R6, #3 ; get the starting address of the string
STR R1, R6, #14 ; pass the parameter
STR R6, R6, #13
ADD R6, R6, #11
JSR UPPERCASE
HALT

UPPERCASE STR R7, R6, #1
AND R1, R1, #0
STR R1, R6, #4
LDR R2, R6, #3

CONVERT ADD R3, R1, R2 ; add index to starting addr of string
LDR R4, R3, #0
BRz DONE ; Done if NULL char reached
LD R5, a
ADD R5, R5, R4 ; ’a’ <= input string
BRn NEXT
LD R5, z
ADD R5, R4, R5 ; input string <= ’z’
BRp NEXT
LD R5, asubA ; convert to uppercase
ADD R4, R4, R5
STR R4, R3, #0

NEXT ADD R1, R1, #1 ; increment the array index, i
STR R1, R6, #4
BRnzp CONVERT

DONE LDR R7, R6, #1
LDR R6, R6, #2
RET

a .FILL #-97
z .FILL #-122
asubA .FILL #-32
STACK .BLKW 100

.END

Figure B.9 LC-3 assembly language code for the upper-/lowercase program
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.386P

.model FLAT

_DATA SEGMENT ; The NULL-terminated scanf format
$SG397 DB ’%s’, 00H ; string is stored in global data space.
_DATA ENDS

_TEXT SEGMENT

_string$ = -8 ; Location of "string" in local stack
_main PROC NEAR

sub esp, 8 ; Allocate stack space to store "string"
lea eax, DWORD PTR _string$[esp+8]
push eax ; Push arguments to scanf
push OFFSET FLAT:$SG397
call _scanf

lea ecx, DWORD PTR _string$[esp+16]
push ecx ; Push argument to UpcaseString
call _UpcaseString

add esp, 20 ; Release local stack space
ret 0

_main ENDP

_inputString$ = 8 ; "inputString" location in local stack
_UpcaseString PROC NEAR

mov ecx, DWORD PTR _inputString$[esp-4]
cmp BYTE PTR [ecx], 0
je SHORT $L404 ; If inputString[0]==0, skip the loop

$L403: mov al, BYTE PTR [ecx] ; Load inputString[i] into AL
cmp al, 97 ; 97 == ’a’
jl SHORT $L405
cmp al, 122 ; 122 == ’z’
jg SHORT $L405
sub al, 32 ; 32 == ’a’ - ’A’
mov BYTE PTR [ecx], al

$L405: inc ecx ; i++ %$
mov al, BYTE PTR [ecx]
test al, al
jne SHORT $L403 ; Loop if inputString[i] != 0

$L404: ret 0
_UpcaseString ENDP
_TEXT ENDS
END

Figure B.10 x86 assembly language code for the upper-/lowercase program


