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Overview of Computer Architecture 

1. Overview of Computer Architecture 
§1.1  Components and connections 
For a very simple introduction to how computers and electronics work, refer to: 
 http://electronics.howstuffworks.com 
 http://wikipedia.org 
and look for topics involving computers and electronics. 
A simple view of a computer would be that it is composed of a CPU, memory, and input/output 
devices, connected together by buses (sets of wires, used for communication between the 
components). 
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§1.2  Creating semiconductor chips 
The CPU, memory, and controller chips are composed of packaged silicon wafers.  The silicon 
wafers are created by growing a silicon crystal from molten silicon, and slicing it into thin disks.  
Hundreds of millions of transistors and connecting data and power paths are constructed on the 
wafer. 
Gases can be infused into the surface of the chip, by surrounding the chip by an appropriate gas that 
is absorbed, to create a thin layer with a different chemical composition.  For example infusing 
oxygen into silicon generates SiO2, which is used as an insulator, and a barrier to ion implantation.  
Firing high speed ions at the surface (ion implantation) can also be used to insert chemicals into 
the surface.  “Doping” elements (P, As, B) are often inserted in this manner. 
Chemicals can be deposited on the surface, by condensing a hot gas containing the chemical.  For 
example, aluminium or copper can be deposited and later etched to form data and power paths.  
Si3N4, can be deposited to protect the underlying material from ion implantation. 

Selective layers of chemicals can be removed (etched) by a chemical process.  this is often used 
after photolithography has been used to cover some of the material, and inhibit etching in those 
areas. 
Photosensitive material (photoresist) can be deposited on top of a layer of material that we want to 
etch, and exposed to ultra-violet light or X rays shone through a mask, to create a pattern 
(photolithography).  The photoresist exposed to the light changes its chemical properties, and 
either the exposed or unexposed photoresist is then developed and removed.  The remaining 
photoresist is hardened, and a chemical process is used to remove the exposed underlayer not 
covered by the photoresist.  The material exposed by removing the underlayer can then have a 
doping material implanted.  Finally, the remaining hardened photoresist and underlayer beneath it 
can be removed. 
The wafer can be polished, to remove material that projects above the surface, and create a flat 
plane (planarization).  For example, holes can be etched, then the surface covered with another 
material, then the surface polished to remove the material other than that filling the holes. 
By performing the above processes many times, different materials can be added to different parts 
of the wafer, and transistors built up.  Perhaps about 450 processes, including about 30 masks may 
be performed and 20 different layers may be built up. 
In 2006, transisters have dimensions of about 65 nanoMetres, which is only a few hundred atoms 
across.  In 2007, Intel hope to produce 45 nanoMetre transisters.  There is talk of decreasing the 
dimensions down to around 20 nanoMetres in the future, which must be getting close to 
fundamental limits on size.  Something else, such as building more layers, or making thinner 
connectors, will have to be done to pack more transistors on a chip. 
Silicon has 4 valence electrons.  Phosphorus or arsenic, with one more valence electron, can be 
used for N-type (negative) doping.  Boron or gallium, with one less valence electron, can be used 
for P-type (positive) doping.  N-type doping generates a material with free electrons that can easily 
move out of the material.  P-type doping generates a material with “holes” for electrons,  that can 
easily attract external electrons. 
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I II  III IV V VI VII VIII 

H        He 

Li Be  B C N O F Ne 

Na Mg  Al Si P S Cl Ar 

K Ca ... Ga Ge As Se Br Kr 

When N-type and P-type material are put together, they create a diode, which is essentially a one 
way gate.  If the N-type material is connected to a low voltage, and the P-type material is connected 
to a high voltage, the electrons will flow through the connection, but not if the voltage difference is 
the other way around.  It is possible to create more complicated transistors (metal-oxide 
semiconductor field-effect transistors, MOSFET), that allow electricity to flow or not flow, 
depending on the voltage supplied to a “switch”.  There are two types of such transistor, P-type 
(switch on with low voltage)  and N-type (switch on with high voltage). 
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N source N drain

P substrate
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N source N drain
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P sourceP drain

N substrate
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By using such circuits, we can create higher level NAND, NOR, and NOT gates: 
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§1.3  Creating Boolean functions out of gates 
In fact any Boolean function can be built from transistors.  For example, an integer value is 
essentially composed of Boolean bit values.  The bits that make up the sum of two integer values 
are functions of the bits that make up the integers being added, so a circuit to add two integer values 
can be built from transistors. 
A “half adder” is a logic circuit that takes two binary digits, and computes their sum (the “exclusive 
or” of the bits), and the carry (the “and” of the bits).  For example, 1 + 0 = 1, with carry 0, and 1 + 1 
= 0, with carry 1. 
component { in opd1, opd2 } halfAdder { out sum, carry } 
 begin 
  { in opd1 opd2 } xor( 2 ) { out sum }; 
  { in opd1 opd2 } and( 2 ) { out carry }; 
 end 

Two half adders can be combined to produce a “full adder”, that takes two binary digits, together 
with a carry in, and generates the sum and carry out.  For example, if we have a carry in of 1, and 
add 1 + 1, we get 1, with a carry out of 1. 
component { in opd1, opd2, carryIn } fullAdder { out sum, carryOut } 
 begin 
  path sum1, carry1, carry2; 
  { in opd1, opd2 } halfAdder { out sum1, carry1 }; 
  { in sum1, carryIn } halfAdder { out sum, carry2 }; 
  { in carry1 carry2 } or( 2 ) { out carryOut }; 
 end 

By combining an array of “n” full adders, we can add two “n” bit numbers.  The carry out from 
adding the “i”th bits becomes the carry in when adding the “i+1”th bits, so the carry ripples through 
the circuit, and the component is called a “ripple adder”.  The algorithm executes in O( n ) time. 
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component { in opd1[ n ], opd2[ n ], carryIn } add( n )  
 { out sum[ n ], carryOut } 
 begin 
  path carry[ n + 1 ]; 
  { in carryIn } join( 1 ) { out carry[ 0 ] }; 
  for i from 0 upto n do 
   { in opd1[ i ], opd2[ i ], carry[ i ] } fullAdder  
    { out sum[ i ], carry[ i + 1 ] }; 
  end 
  { in carry[ n ] } join( 1 ) { out carryOut }; 
 end 

carry[ 0 ]

sum[ 0 ]carry[ 1 ]

opd1[ 0 ]
opd2[ 0 ]

fullAdder

carry[ 1 ]

sum[ 1 ]carry[ 2 ]

opd1[ 1 ]
opd2[ 1 ]

fullAdder

carry[ 2 ]

sum[ 2 ]carry[ 3 ]

opd1[ 2 ]
opd2[ 2 ]

fullAdder

carry[ 3 ]

sum[ 3 ]carry[ 4 ]

opd1[ 3 ]
opd2[ 3 ]

fullAdder

 

§1.4  Flip-Flops 
We can create what is called a “flip-flop” to store a “bit” (binary digit).  This is a logic circuit that 
has feedback (cycles in the directed graph of components and paths) that provides an internal state.  
An array of flip-flops can be used to represent the value of a register. 
A simple flip-flop takes a clock signal “clock”, and a value “opd1” as inputs, and produces a value 
“result1” as output. 
If “clock == true”, and “opd1 == true”, then “result2 = false”, and “result1 = true”.  If “clock == 
true”, and “opd1 == false”, then “result1 = false”, and “result2 = true”.  So if “clock == true”, 
“result1 = opd1”, and “result2 = !opd1”. 
If “clock = false”, then “result1” and “result2” can take any value, so long as “result2 == !result1”. 
So, when the clock is set, a simple flip-flop stores the value of “opd1” in “result1”.  The value 
remains there, even after the clock is cleared, and “opd1” changes. 
component { in clock, opd1 } simpleFlipFlop { out result1 } 
 begin 
  path opd2, clkOpd1, clkOpd2, result2; 
  { in opd1 } not( 1 ) { out opd2 }; 
  { in clock opd1 } and( 2 ) { out clkOpd1 }; 
  { in clock opd2 } and( 2 ) { out clkOpd2 }; 
  { in clkOpd1 result1 } or( 2 ).not( 1 ) { out result2 }; 
  { in clkOpd2 result2 } or( 2 ).not( 1 ) { out result1 }; 
 end 

orand

not
and

or

not

not

clock

opd1

opd2

result1

result2

clock

clkOpd1

clkOpd2  
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To allow the input data to stabilise before the change is visible to the output, and to avoid problems 
when the output feeds back to the input, it is best to pair two simple flip-flops, to form a “master-
slave flip-flop”.  When “clock1” is true, the value of “opd” is transferred to the internal state 
“value”, but does not pass through to the output “result”.  When “clock1” is false, the internal state 
“value” is transferred to “result”, but changes in the input have no effect.  Thus the master-slave 
flip-flop appears to transfer the data from “opd” to “result” when “clock1” changes from true to 
false. 
component { in clock1, opd } masterSlaveFlipFlop { out result } 
 begin 
  path clock2, value; 
  { in clock1 } not( 1 ) { out clock2 }; 
  { in clock1, opd } simpleFlipFlop { out value }; 
  { in clock2, value } simpleFlipFlop { out result }; 
 end 

§1.5  Registers and memory 
The CPU (central processing unit) contains electrical circuits, to decode and execute instructions, 
load data from and store data to memory, etc.  It also contains a small amount of fast local memory, 
namely what are called registers.  On the Alpha, all registers are composed of 64 bits.  There is a 
program counter (PC) register, that contains the memory address of the next instruction, 32 
integer registers to contain integer data, and 32 floating point registers, to contain floating point 
data.  There are also other internal registers, to store temporary information, etc. 
Thus we can think of our CPU as roughly corresponding to the data structure 
class CPU { 
 Quadword programCounter; 
 Quadword[] intReg = new Quadword[ 32 ]; 
 Quadword[] floatReg = new Quadword[ 32 ]; 
 // and some special registers 
 } 

In fact intReg[ 31 ] and floatReg[ 31 ] always return zero if read, and writing to them has no 
effect. 
Memory corresponds to an array of bytes 
 byte[] memory = new byte[ ... ]; 

that can be indexed by a memory address. 

§1.6  Motherboards, cards and buses 
Inside your computer, you will find a large green circuit board, called the motherboard.  The 
motherboard connects all the components of the computer together.  Smaller boards called cards 
can be plugged into the motherboard.  Computer chips, including the CPU, memory, and 
input/output controllers are plugged in to the boards.  The CPU is usually surrounded by large 
cooling fins with a fan.  There is usually a central hub, that all communications between 
components pass through.  The wires that connect the components are called buses. 
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A drawing representing a processor chip containing two dies (silicon wafers).  The regular area at 
the bottom of each die is the cache memory. 

§1.7  The execution cycle 
Instructions are stored in computer memory.  The program counter register contains the memory 
address of the next instruction.  The CPU loops, obtaining an instruction, incrementing the program 
counter, decoding and executing the instruction, etc. 
while ( true ) { 
 Longword instruction = getLongwordAt( programCounter ); 
 programCounter = programCounter + 4; 
 decode the instruction; 
 obtain the operands of the instruction; 
 perform the operation of the instruction; 
 save the result; 
 } 

Program counter

Memory containing 
program

Current instruction

Next instruction
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§1.8  The clock 
There is a processor clock that generates a step function with regular changes in voltage.  Perhaps 
the change from low to high voltage represents a clock tick.  This clock is used to control the 
activity of the CPU.  A typical CPU clock speed in 2006 is about 3.8GHz, or 0.26 nanoSec for a 
clock cycle. 

Time  
All activity in the CPU is triggered by a clock tick, and data paths are opened and closed to permit 
data to flow through from one part of the CPU to another.  Excluding memory accesses, simple 
instructions might take about 15-20 clock cycles to execute (say 5-6 clock cycles for an instruction 
fetch, 3-4 cycles to obtain the operands, 2-3 cycles to compute the the result, and 3-6 cycles to save 
the result). 

§1.9  Overlapping instruction execution 
Nowadays, instruction execution is “pipelined”, and execution of instructions overlap, so that when 
one instruction is being executed, the next instruction is being decoded, and the one after that is 
being fetched.   In fact, if there are multiple copies of the circuitry in the CPU, several instructions 
may even be “issued” (scheduled to execute) at the same time.  Combined with pipelining,  
perhaps a total of up to 50 instructions may be in the process of execution at the same time.  
However, conditional branch instructions may limit the extent to which instruction execution may 
be pipelined, because it is not possible to determine which instruction will be executed next, until 
after the previous instruction has completed execution (although we can guess which one will be 
executed, execute our guess, and discard computations if the guess turns out to be wrong).  
Similarly, the operands for one instruction may depend on the results of previous instructions, and 
hence an instruction might have to wait for the result of a previous instruction.  Also, instructions 
can only execute in parallel if independent circuits are available for use. 

Fetch Decode Load Execute Store

Fetch Decode Load Execute Store

Fetch Decode Load Execute Store

Instrn 1

Instrn 2

Instrn 3

Pipelining of instructions

Time
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Instrn 1

Instrn 2

Time

Dual issue (concurrent scheduling of instructions)
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§1.10  Cache 
External memory, stored on separate chips, takes much longer for the CPU to access than registers.  
External memory has its own clock, which in 2006 is about 667 MHz, much slower than the CPU 
clock.  To decrease the delay in external memory access, the CPU “caches” (keeps a copy of) 
recently used memory.   The memory in the CPU used for the cache (static RAM) is faster, but 
requires more transistors and is more expensive to build than the external memory (dynamic 
RAM). Nowadays, there are at least two levels of cache.  In 2006, the smallest and fastest (level 1) 
cache is about 56 KBytes in size, and takes about 2 CPU clock cycles to access.  Level 2 cache is is 
about 512 KBytes - 2 MByte in size, and takes about 6-10 clock cycles to access, if part of the CPU.  
Some CPUs even have a level 3 cache (around 8MBytes).  External memory is much larger, about 
512 MBytes - 1 GByte, and takes about 100 - 300 CPU clock cycles to access.  But access to 
memory is fast compared with disk access times.  The seek time (time to move the disk head to the 
right track) is around 5 - 10 milliSec, and the rotation delay, while the track spins to the correct 
sector of the track is similar.  This is tens of millions of clock cycles!  But hard disks provide large 
amounts of permanent storage – 160 - 250 GBytes is fairly typical for a personal computer in 2006, 
and Weta Workshop, the special effects company for “Lord of the Rings”, have hundreds of 
teraBytes of disk space. 
Registers 32 - 64 1 cycle 
L1 cache 56 KB 2 cycles 
L2 cache 512 KB - 2MB 6 - 10 cycles 
External Memory 512MB - 1 GB 100 - 300 cycles 
Disks 160 GB - 250 GB 107 cycles to seek 
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§1.11  Moore’s law 
As a general rule, the number of transistors that can fit on a processor chip doubles every couple of 
years, due to the increased ability to manufacture smaller features on a chip.  The number of 
transistors on a memory chip doubles about every 18 months. 

 Intel Processor Year of 
introduction 

Transistors 

4004 1971 2,250 

8008 1972 2,500 

8080 1974 5,000 

8086 1978 29,000 

286 1982 120,000 

386™ processor 1985 275,000 

486™ DX processor 1989 1,180,000 

Pentium® processor 1993 3,100,000 

Pentium II processor 1997 7,500,000 

Pentium III processor 1999 24,000,000 

Pentium IV processor 2000 42,000,000 

Pentium IV processor 2005 178,000,000 

 2007? 410,000,000 
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Year Feature size (nm) 
1980 3000 
1983 2000 
1984 1500 
1987 1000 
1989 600 
1991 500 
1992 400 
1994 350 
1997 250 
1998 180 
2002 130 
2004 90 
2006 65 
2007 45 

Because everything is smaller, it takes less time for information to propagate between components.  
Because more transistors are available,  the circuitry on the chip can be duplicated, and instructions 
can be executed in parallel.  More space is available on the chip to implement more complex 
algorithms.  More space is available for such things as cache memory (which takes up about a third 
of the space in a modern CPU).  So the performance of computers also increases at a comparable 
rate (perhaps even faster).  The density of storage of data on a hard disk also increases at a similar 
rate.  However, disk access times depend primarily on the time taken to position the disk head,  so 
disk “latency” (the time delay before the data can be accessed) does not change much. 
CPU manufacturers are now finding it more difficult to achieve speed improvements by increasing 
the parallelism withing a single processor, or increasing the size of cache, and are now tending to 
develop chips with multiple processors instead. 

§1.12  Speed of execution 
It is important to have an appreciation of how much difference there is in the times taken to perform 
various operations in a computer.  Disk movements occur at speeds comparable to the 1/10th of the 
speed of sound, while electronic signals within the CPU travel at speeds around 2/3 of the speed of 
light. 
100 (1 second) Time for light to travel to the moon. 

 
10-1 Blink of an eye.  Duration for a frame of a 

movie.  Sattelite communication delay. 
10-2 Disk seek time.  Time for a disk to rotate. TV 

refresh rate. 
10-3 (1 millisecond) Time for sound to travel 30cm.  Sound 

frequency. 
10-4 Time to transfer 1 byte over 56Kb/sec modem. 

 
10-5  

 
10-6 (1 microsecond) Time to transfer 1 byte over broadband modem. 

 
10-7 Time to transfer 1 byte over ethernet.  Time to 

access memory.  Time to transfer 1 byte from 
disk. 

10-8  
 

10-9 (1 nanosecond) CPU clock speed.  Time to execute an 
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instruction.  Time for light to travel 30cm. 
10-10 Microwave frequency 

 

§1.13   Size of computer data 
It is also nice to get an idea of how small the components of a computer are. 
100 (1 metre) Wavelength of VHF/UHF. 

 
10-1 Wavelength of audible sound. 

 
10-2 (1 centimetre) Wavelength of microwaves. 

 
10-3 (1 millimetre)  

 
10-4 (100 micrometre) Width of human hair.  Dimensions of a dust 

mite. 
10-5 (10 micrometre) Dimensions of a eukaryotic cell. 

 
10-6 (1 micrometre) Dimensions of a bacterium.  Wavelength of 

visible light. 
10-7 (100 nanometre) Dimensions of a bit in a computer memory or on 

disk.  Dimensions of a transistor. Dimensions of 
a virus. 

10-8 (10 nanometre)  
 

10-9 (1 nanometre) Wavelength of soft X-rays. 
 

10-10 (1 Angstrom) Dimensions of an atom. 
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2. Alpha Instruction Formats 
On the Alpha, each instruction is stored in a longword, and hence is composed of 32 bits or 4 bytes.  
Instructions must be aligned (stored at an address divisible by 4). 
Normally, instructions at successive addresses are executed in sequence (or at least appear to be), 
because the program counter is incremented by the size of an instruction after loading the 
instruction into the CPU.  However, some instructions (called branch instructions) can modify the 
program counter.  This is how we deviate from a straight line path of execution and manage to 
create loops, if statements, etc. 
Many modern machines have the following kinds of instructions: 
• Instructions that perform arithmetic and logical operations on registers.  For example, 

there might be an instruction to add the contents of two registers, and store the result in a third 
register.  On the Alpha, we could write “addq $0, $1, $2;” to generate an instruction that 
adds the quadwords in integer registers 0 and 1, and stores the result in register 2. 

• Instructions that load data from memory into a register, or store data from a register 
into memory.  For example, there might be an instruction to load a quadword from memory 
into an integer register, or save the contents of an integer register into a quadword in memory.  
On the Alpha we could write “ldq $2, 0($1);” to generate an instruction that loads the 
quadword at the address specified by the contents of integer register 1, into integer register 2. 

• Instructions that check the value of a register, and, based on this value, either do 
nothing, or modify the program counter, so that the next instruction is obtained from a 
different place.  On the Alpha we could write “bne $1, loop;” to generate an instruction 
that checks the value of integer register 1, and if it is not equal to 0, changes the program 
counter to the address corresponding to the label “loop”. 

On the Alpha, all instructions have a 6 bit opcode stored in bits 26-31, which indicates the kind of 
instruction.  Given this opcode, the CPU knows how to decode the rest of the instruction. 

31 026 25

Opcode

Common format for all instructions

Other Information
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Opcodes 
00 call_pal 10 inta 20 ldf 30 br 
01 call_xfc 11 intl 21 ldg 31 fbeq 
02 Res 12 ints 22 lds 32 fblt 
03 Res 13 intm 23 ldt 33 fble 
04 Res 14 itfp 24 stf 34 bsr 
05 Res 15 fltv 25 stg 35 fbne 
06 Res 16 flti 26 sts 36 fbge 
07 Res 17 fltl 27 stt 37 fbgt 
08 lda 18 misc 28 ldl 38 blbc 
09 ldah 19 hw_mfpr 29 ldq 39 beq 
0a ldbu 1a jsr 2a ldl_l 3a blt 
0b ldq_u 1b hw_ld 2b ldq_l 3b ble 
0c ldwu 1c fpti 2c stl 3c blbs 
0d stw 1d hw_mtpr 2d stq 3d bne 
0e stb 1e hw_rei 2e stl_c 3e bge 
0f stq_u 1f hw_st 2f stq_c 3f bgt 
The integer operate instruction formats on the Alpha are shown below. 

31 026 25

Opcode

Integer operate instruction with second operand a register

regA regB regCFunction00

21 20 16 15 13 12 11 5 4

31 026 25

Opcode

Integer operate instruction with second operand a literal

regA regCFunction1

21 20 13 12 11 5 4

Unsigned literal

 
Integer operate instructions also have a function code, stored in bits 5-11, which gives more detail 
about what operation the instruction should perform.  The operands are specified in other fields. 
Bits 21-25 specify the register that contains the first operand.  The second operand can be either a 
register or a constant, and the appropriate alternative is specified by a flag in bit 12.  If the flag is 0, 
the second operand is a register, and this register is specified in bits 16-20.  If the flag is 1, the 
second operand is an unsigned 8 bit constant, and this constant is specified in bits 13-20.  The result 
is stored in a register, and the destination register is specified in bits 0-4.  There are similar formats 
for other instructions. 
The size of each field in the instruction is important.  Because the field for a register number 
contains 5 bits, we can specify at most 25 = 32 different registers.  Thus it is not possible to have 
more than 32 integer registers.  The field for the unsigned constant is 8 bits, so must be in the range 
0 .. 255. 
It must be possible to determine the meaning of an instruction by a straightforward algorithm.  The 
opcode determines the overall format of the rest of the instruction.  Given that we know the 
instruction is an integer operate instruction, we can check the function code to determine exactly 
which integer operate instruction it is, and check the literal flag to determine whether the second 
operand is a constant or register. 
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Function code for opcode 0x10 
00 addl 20 addq 40 addlv 60 addqv 
01  21  41  61  
02 s4addl 22 s4addq 42  62  
03  23  43  63  
04  24  44  64  
05  25  45  65  
06  26  46  66  
07  27  47  67  
08  28  48  68  
09 subl 29 subq 49 sublv 69 subqv 
0a  2a  4a  6a  
0b s4subl 2b s4subq 4b  6b  
0c  2c  4c  6c  
0d  2d cmpeq 4d cmplt 6d cmple 
0e  2e  4e  6e  
0f cmpbge 2f  4f  6f  
10  30  50  70  
11  31  51  71  
12 s8addl 32 s8addq 52  72  
13  33  53  73  
14  34  54  74  
15  35  55  75  
16  36  56  76  
17  37  57  77  
18  38  58  78  
19  39  59  79  
1a  3a  5a  7a  
1b s8subl 3b s8subq 5b  7b  
1c  3c  5c  7c  
1d cmpult 3d cmpule 5d  7d  
1e  3e  5e  7e  
1f  3f  5f  7f  
The other instruction formats on the Alpha are shown below. 

31 026 25

Opcode

Floating point operate instruction

regA regB regCFunction

21 20 16 15 5 4

 
31 026 25

Opcode

Memory access instruction

regA regB

21 20 16 15

Signed displacement
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31 026 25

Opcode

Branch instruction

regA

21 20

Signed displacement / 4

 
31 026 25

Opcode

Special instruction

Function

 
There are some instructions that ignore some fields, or use them for some other purpose, but all 
instructions still more or less conform to one of these formats. 
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3. Assembly language 
How do we create machine code?  We write a program, in textual form, and use another program to 
translate this into machine code instructions.  The name given to the translator depends on how high 
level the textual version of the program is.  If the original program is written in a typical high level 
language, such as C, and is fairly machine independent, then the translator is called a compiler.  If 
the original program is written in a low level language that does little more than specify the 
instructions in a textual form, the language is called assembly language, and the translator is called 
an assembler.  Because different kinds of computers have different instruction sets, assembly 
language is very different on different kinds of computers. 
What does an assembly language program look like?  Here is a very simple piece of assembly 
language: 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
 
// void main() { 
//  while ( TRUE ) { 
//   char c; 
//   c = getChar(); 
//   if ( c < 0 ) 
//    break; 
//   putchar( c ); 
//   } 
//  exit( 0 ); 
//  } 
block main uses CALLSYS { 
 code { 
 public enter: 
   { 
  loop: 
   ldiq $a0, CALLSYS_GETCHAR; 
   call_pal CALL_PAL_CALLSYS; 
   blt  $v0, end; 
   mov  $v0, $a1; 
   ldiq $a0, CALLSYS_PUTCHAR; 
   call_pal CALL_PAL_CALLSYS; 
   br  loop; 
  end: 
   } 
   { 
   clr  $a1; 
   ldiq $a0, CALLSYS_EXIT; 
   call_pal CALL_PAL_CALLSYS; 
   } 
  } code 
 } block main 

It should be pointed out that this is my own home grown assembler.  It is a bit different from most 
conventional assemblers. 
Altogether, the program reads characters from the keyboard, and outputs them to the screen. 
The line 
entry main.enter; 

just specifes the entry point for the program (in other words, where the program starts executing). 
The line 
import "../IMPORT/callsys.h"; 
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specify that the code in the specified file is imported (included). 
The C-like code, with // to the left of each line, is really just a sequence of comments.  They are 
there for people, but the assembler ignores them.  Because assembly language programs are very 
low level and difficult to read, it is desirable to always document your assembly language program 
by comments written in a high level language. 
The lines 
block main uses CALLSYS { 
 } block main 

just specify that we are creating a block of code called main, using some definitions in a block 
called register that specifies the register numbers for the symbolic names a0, a1, v0, etc, and using 
some definitions in a block called CALLSYS that specifies the values of CALL_PAL_CALLSYS, 
CALLSYS_GETCHAR, CALLSYS_PUTCHAR, etc. 
The lines 
 code { 
  } code 

just specify that we are defining code (instructions), rather than data.  The assembled bit patterns 
are placed in the section of memory used for code. 
The line 
 public enter: 

labels some code, with the name “enter”.  This code can be referred to outside the block, as 
main.enter. 
The lines 
  { 
 loop: 
  ldiq $a0, CALLSYS_GETCHAR; 
  call_pal CALL_PAL_CALLSYS; 
  blt  $v0, end; 
  mov  $v0, $a1; 
  ldiq $a0, CALLSYS_PUTCHAR; 
  call_pal CALL_PAL_CALLSYS; 
  br  loop; 
 end: 
  } 

represent the real work. 
We label the beginning of the loop by the identifier “loop”.  As in all computer languages, the 
name is arbitrary, and could be consistently replaced by any other identifier. 
The line 
  ldiq  $a0, CALLSYS_GETCHAR; 

loads the constant value CALLSYS_GETCHAR (whatever that has been defined to be in the block 
CALLSYS, in “../IMPORT/callsys.h”) into register a0. 
The line 
  call_pal CALL_PAL_CALLSYS; 

then makes a request (rather like a function invocation) to the operating system to do something 
(read a character from the keyboard).  The operating system uses the value in register $a0 to 
determine what action to perform (in this case read a character), and returns the result in register 
$v0.  Other parameters to system calls may be passed in registers $a1, $a2, $a3, ... 
The line 
  blt  $v0, end; 
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causes a branch out of the loop if the returned characacter is < 0 (indicating end of file). 
The lines 
  mov  $v0, $a1; 
  ldiq  $a0, CALLSYS_PUTCHAR; 
  call_pal CALL_PAL_CALLSYS; 

move the character from register v0 into register a1, load the constant value CALLSYS_PUTCHAR into 
register $a0 (to specify that the action is to write a character), and makes a request to the operating 
system (to write the character to the screen). 
The line 
  br  loop; 

causes the program to branch back to the address corresponding to the label loop. 
The lines 
  { 
  clr  $a1; 
  ldiq $a0, CALLSYS_EXIT; 
  call_pal CALL_PAL_CALLSYS; 
  } 

Cause the program to terminate and control to be returned to the operating system. 
Now, to really understand this program, you have to not only understand what each instruction 
does, but also know the general conventions for making system calls, and what the two system calls 
that read and write a character, and the exit system call actually do. 
There is also the additional complication that many of these instructions are not real instructions, 
and get converted into something different.  However, it still gives a feeling for the manner in 
which assembly language programs are written, and the low level they correspond to.  We have to 
build loops and if statements out of branch instructions. 
In fact the instructions for making system call requests are usually put inside functions, and the 
functions are called instead. 
block Sys { 
 // char getChar() { 
 //  // read a character from the simple terminal; 
 //  } 
  
 public block getChar uses proc, CALLSYS { 
  code { 
  public enter: 
   lda  $sp, -sav0($sp); 
   stq  $ra, savRet($sp); 
  body: 
   ldiq $a0, CALLSYS_GETCHAR; 
   call_pal CALL_PAL_CALLSYS; 
  return: 
   ldq  $ra, savRet($sp); 
   lda  $sp, +sav0($sp); 
   ret; 
   } code 
  } block getChar 
  
 // void putChar( char c ) { 
 //  // write a character to the simple terminal; 
 //  } 
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 public block putChar uses proc, CALLSYS { 
  code { 
  public enter: 
   lda  $sp, -sav0($sp); 
   stq  $ra, savRet($sp); 
  body: 
   mov  $a0, $a1; 
   ldiq $a0, CALLSYS_PUTCHAR; 
   call_pal CALL_PAL_CALLSYS; 
  return: 
   ldq  $ra, savRet($sp); 
   lda  $sp, +sav0($sp); 
   ret; 
   } code 
  } block putChar 
 ... 
 } block main 

The code  
   lda  $sp, -sav0($sp); 
   stq  $ra, savRet($sp); 

at the beginning and 
   ldq  $ra, savRet($sp); 
   lda  $sp, +sav0($sp); 
   ret; 

at the end is code to save registers on entry to a function and restore them on exit.  Don’t worry 
about this code for the moment. 
Let’s consider another piece of assembly language that uses the putChar function. 
block IO { 
 ...  
 // void print( char *s ) { 
 //  while ( *s != 0 ) { 
 //   putChar( *s ); 
 //   s++; 
 //   } 
 //  } 
 // 
 public block print uses proc { 
  abs { 
   s  = s0; 
   } abs 
  code { 
  public enter: 
   lda  $sp, -sav1($sp); 
   stq  $ra, savRet($sp); 
   stq  $s0, sav0($sp); 
  body: 
   mov  $a0, $s;    // Pointer to char in string 
   { 
   while: 
    ldbu $a0, ($s);   // Get character 
    beq  $a0, end;   // Break if at end of string 
   do: 
    bsr  Sys.putChar.enter; // Print char 
    addq $s, 1;    // Increment pointer 
    br  while; 
   end: 
   } 
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  return: 
   ldq  $s0, sav0($sp); 
   ldq  $ra, savRet($sp); 
   lda  $sp, +sav1($sp); 
   ret; 
   } code 
  } block print 
 ... 

Again, don’t worry about the function entry/exit code. 
This assembly language represents a function, that prints out a string.  The address of the string is 
initially in register a0, and is moved to another register we have named s. 
Strings are represented by the address of memory containing the text.  The end of the string is 
indicated by a null byte. 
The line 
  s  = s0; 

specifies that the identifier s really means s0 (the name of a register). 
The line 
  mov  $a0, $s;     // Pointer to char in string 

says copy the contents of register a0 into register s.   
The line 
   ldbu  $a0, ($s);   // Get character 

says load the byte at the address indicated by s, into register a0. 
The line 
   beq  $a0, end;    // Break if at end of string 

says if a0 is equal to 0, branch to the label “end” (in other words, set the program counter to the 
address corresponding to the label “end”).  This is based on the convention of using a zero byte to 
indicate the end of a text string. 
The line 
    bsr  Sys.putChar.enter; // Print char 

says invoke the function “putChar”. (bsr stands for branch to subroutine.  Subroutine is another 
name for function, procedure, or method.)  “Sys.putChar.enter” is in fact a function that prints 
the character passed in register a0. 
The line 
   addq  $s, 1;    // Increment pointer 

says add 1 to the register s.  In other words, increment the pointer, to point to the next character. 
The line 
   br  while; 

says branch back to the start of the loop, to process the next character. 
Again, the names given to the labels (“while”, “do”, “end”) are chosen by the programmer.  I chose 
them because I am implementing a while loop, and these names make the structure of the program 
clearer. 
Altogether, the program goes through a loop, printing the character pointed to, and incrementing the 
pointer.  It terminates when it finds a null byte. 
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4. Instruction Syntax 
What is the syntax of instructions written in assembly language?  Consider a couple of examples: 
 addq  $t0, $t1, $t3; 
 subq  $t0, 23, $t4; 

We start with a symbolic opcode (operation code), representing the operation to be performed.  This 
is used to specify the opcode field in the assembled instruction, together with the function code, for 
operate instructions.  For example, the above instructions have symbolic opcodes “addq” and 
“subq”.  These instructions happen to translate into an actual opcode of 0x10, with function codes 
0x20 and 0x29, respectively. 
We follow the opcodes by a comma separated sequence of operands, then a semicolon. 
In the above examples, we add the contents of registers $t0 and $t1 together, and put the answer in 
register $t3, and we subtract the value 23 (decimal) from the contents of register $t0, and put the 
answer in register $t4. 
There are five kinds of operands.  The opcode determines the number and kind of legal operands. 
• Register. 
 The operand represents a source or destination register. It is written as “$register”, for 

example, $a0, $v0. 
• Unsigned 8 bit constant. 
 The second operand of an integer operate instruction can be of this form.  The constant is 

written directly, without any additional annotation, for example 23 in the above subq 
instruction. 

• Memory address. 
 The operand represents a memory address, computed as a displacement (offset) from a base 

register.  It is written as “displacement($register)”, and means the displacement + 
contents of integer register $register.  The displacement is a signed 16 bit integer.  The 
displacement may be omitted if it is 0, allowing the notation “($register)”.  If the register is 
$zero (register 31), which always contains 0, then the operand can be written with just the 
displacement.  For example, we can write 24($t0).  The notation ($t0) is an abbreviation for 
0($t0), and the notation 1234 is an abbreviation for 1234($zero). Displacement operands 
can only be used in load and store instructions. 

• Branch destination. 
 The operand represents a destination address for a branch instruction.  It is written directly as 

the destination address, but is stored as a displacement from the address just after the branch 
instruction.  The last two bits of the displacement are not stored in the instruction, because 
they are always 0. 

• Unsigned 26 bit constant. 
 The operand of a special instruction is of this form.  For example, CALL_PAL_CALLSYS in a 

call_pal instruction. 

§4.1  Integer operate instructions 
Integer operate instructions are used to perform operations on values in integer registers. 
Instructions corresponding to integer operate instructions have three operands.   
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An integer operate instruction of the form 
 opcode $regA, $regB, $regC; 

means 
 intReg[ regC ] = intReg[ regA ] operation intReg[ regB ]; 

for the specified operation.  For example, “subq $t0, $t2, $t4;” means 
 intReg[ t4 ] = intReg[ t0 ] - intReg[ t2 ]; 

An operate instruction of the form 
 opcode $regA, constant, $regC; 

means  
 intReg[ regC ] = intReg[ regA ] operation constant; 

for the specified operation.  For example, “subq $t0, 3, $t4;” means 
 intReg[ t4 ] = intReg[ t0 ] - 3; 

We can omit the destination operand $regC, if it is the same as the first source.  The assembler puts 
it in for us.  for example “addq $t1, 1;” means 
 intReg[ t1 ] = intReg[ t1 ] + 1; 

Floating point operate instructions are similar, except all registers are floating point registers, and a 
constant is not allowed for the second operand. 
Some integer operate instructions for performing arithmetic are “addq”, “subq”, “mulq”, “divq”, 
“modq”, to evaluate expressions involving +, -, *, /, and %.  The last two do not exist on the real 
machine, but do on the simulator.  There is also a “umulh”instruction, that computes the high 
quadword of the product of two quadwords, to permit the full 128 bit result to be computed.  It is 
useful for performing arithmetic on large values. 
Some integer operate instructions for performing boolean computations are “and”, “bic” (bit clear), 
“bis” (bit set) or “or”, “eqv” (equivalent) or “xornot” (exclusive or not), “ornot”, “xor” 
(exclusive or), corresponding to &, & ~, |, ^ ~, | ~, ^.  For example, “bic $1, $2, $3;” means 
 intReg[ 3 ] = intReg[ 1 ] & ~ intReg[ 2 ]; 

These instructions interpret the data as bit patterns of boolean flags, rather than integers. 
There are also three shift instructions, “sll” (shift left logical), “sra” (shift right arithmetic), and 
“srl” (shift right logical), corresponding to <<, >> and >>>.  these instructions are used to shift the 
bit patterns left and right.  The shift logical instructions fill the vacated bits with 0, while the shift 
right arithmetic instruction fills the vacated bits with the sign bit.  These instructions can be used to 
extract fields out of a bit pattern, and interpret them as either unsigned or signed numbers.  They 
also provide a cheap way to multiply or divide by a power of 2. 
Exercise DATAREP1 
Suppose we have the following values in registers. 
$t0 0x0000000000000000 
$t1 0xffffffffffffff93 
$t2 0x123456789abcdef0 
$t3 0x8888888888888888 
$t4 0x7777777777777777 
$t5 0x0000000000000000 
$t6 0x0000000000000000 
$t7 0x0000000000000000 
$t8 0x0000000000000000 

How will the registers change after executing the instructions 
subq $t0, 1; 
addq $t1, 0x94; 
sll $t2, 7; 
srl $t3, 1, $t5; 
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sra $t3, 1, $t6; 
srl $t4, 1, $t7; 
sra $t4, 1, $t8; 

§4.2  Load and store instructions 
To operate on memory values, we must first load the source data from memory, perform the 
computation, then store the result back in memory. 
Load and store instructions have the form 
  opcode $regA, displacement($regB); 

All involve computing a memory address displacement + intReg[regB]. 
Integer load instructions load an appropriate number of bytes starting at the specified address, and 
store them in intReg[regA].  For example, ldq (load quadword) loads the 8 bytes corresponding to 
a quadword, starting at the memory address, into register intReg[regA].  The instruction ldbu 
(load byte unsigned) loads a single byte from the memory address, into the low byte of register 
intReg[regA], making the high 7 bytes zero. 
Integer store instructions store an appropriate number of bytes from register intReg[regA] to the 
memory starting at the specified address.  For example, stq (store quadword) stores all 8 bytes 
from register intReg[regA] corresponding to a quadword, into memory starting at the memory 
address.  The instruction stb (store byte) stores  the low byte of register intReg[regA], into 
memory at the memory address. 
The default on the Alpha is to store data in memory in little endian format. 
For example the ldq instruction performs the following algorithm: 
 Quadword address = displacement + intReg[ regB ]; 
 Quadword data = 0; 
 for ( int i = 0; i < 8; i ++ ) 
  data |= memory[ address + i ] << ( 8 * i ); 
 intReg[ regA ] = data; 

There is also a lda (load address) instruction, that loads the address into the register, rather than the 
contents of the memory at the address. 
 Quadword address = displacement + intReg[ regB ]; 
 intReg[ regA ] = address; 

Really the load address instruction is like an add instruction with a constant, except that the 
constant is a 16 bit signed value, rather than an 8 bit unsigned value.  It is often used when passing 
reference parameters to functions. 
Floating point load and store instructions are similar to integer load and store instructions, except 
regA is a floating point register. 
Exercise DATAREP2 
Suppose we have memory 
0x1000000 0x123456789abcdef0 
0x1000008 0x0000000000000000 
0x1000010 0x0000000000000000 

How will the registers and memory change after executing the instructions 
ldiq $t0, 0x1000000; 
ldq $t1, ($t0); 
stb $t1, 8($t0); 
ldbu $t2, 2($t0); 
sll $t2, 56, $t3; 
sra $t3, 56, $t4; 
stq $t4, 16($t0); 
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§4.3  Unconditional branch and jump instructions 
Branch instructions are used to change the flow of control in a program. 
The unconditional branch instruction has the form 
 br destination; 

It is used to branch to the specified destination address (usually a label). 
Essentially it corresponds to 
 programCounter = destination; 

The unconditional jump instruction has the form 
 jmp ($reg); 

It is, used to jump to an address when the destination has to be computed at run time.  It is often 
used to implement switch statements. 
Essentially it corresponds to 
 programCounter = intReg[ reg ]; 

§4.4  Subroutine invocation and return instructions 
The bsr (branch to subroutine) instruction has the form 
 bsr destination; 

It is used to branch to code for a function (subroutine, function, procedure and method are words 
that mean essentially the same thing).  It remembers the address just after bsr instruction (in a 
register called the return address register) so that it is possible to return to this address. 
Essentially it corresponds to 
 intReg[ ra ] = programCounter; 
 programCounter = destination; 

The jsr (jump to subroutine) instruction has the form 
 jsr ($reg); 

It is, used to invoke a function when the destination has to be computed at run time.  It is often used 
to implement the invocation of instance methods in object oriented languages. 
Essentially it corresponds to 
 intReg[ ra ] = programCounter; 
 programCounter = intReg[ reg ]; 

There is a matching instruction to return from a function, namely the ret instruction.  It has no 
operands. 
 ret; 

It restores the program counter to its previous value. 
Essentially it corresponds to 
 programCounter = intReg[ ra ]; 

we will deal with function invocations later in more detail. 

§4.5  Conditional branch instructions 
Conditional branch instructions have the form 
 opcode $regA, destination; 

The instruction checks the value of the register, and branches to a destination only if the register 
satisfies some condition. 
 if ( relation holds for intReg[ regA ] ) 
  programCounter = destination; 
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Opcodes can be “beq” (branch if equal to 0), “bne” (branch if not equal to zero), “blt” (branch if 
less than 0), “ble” (branch if less than or equal to 0), “bgt” (branch if greater than 0), “bge” 
(branch if greater than or equal to 0), “blbs” (branch if the low bit is set), and “blbc” (branch if the 
low bit is clear).  The low bit means the units bit of an integer value.  A bit is said to be set if it is 1, 
and clear if it is 0.  My personal programming style is to use blbs and blbc for testing Boolean 
values, rather than bne and beq. 
Exercise DATAREP3 
Suppose memory Label contains the quad value 0x123456789abcdef0. 
What are the values in the individual bytes starting at the address Label? 
What do the instructions 
 ldiq $t0, 8; 
 ldiq $t1, 0; 
 ldiq $t2, Label; 
loop: 
 beq $t0, end; 
 ldbu $t3, ($t2); 
 addq $t2, 1; 
 subq $t0, 1; 
 sll $t1, 8; 
 or $t1, $t3; 
 br loop; 
end: 

achieve, for an arbitrary value stored at address Label? 

§4.6  Compare instructions 
A class of integer operate instruction we have not mentioned is the class of compare instructions.  
These instructions are used to compare two arithmetic operands and create a boolean value.  They 
correspond to the relational operators ==, <, <=.  The opcodes are “cmpeq” (compare equal), for 
testing equality, “cmplt” (compare signed less than), “cmple” (compare signed less than or equal), 
“cmpult” (compare unsigned less than), “cmpule” (compare unsigned less than or equal).  These 
instructions compare the values of the first and second operands, and put the boolean result in the 
destination register (1 for true, 0 for false).  These instructions can be combined with either a 
“blbs” or “blbc” instruction to branch to a destination if a condition holds between two arithmetic 
values.  Because the ordering of unsigned and signed values is different, we need different 
instructions for performing unsigned and signed comparisons. 

§4.7  Conditional move instructions 
Another class of integer operate instruction we have not mentioned is the class of conditional move 
instructions.  They could be replaced by sequences of other instructions, but they provide a concise 
and efficient implementation in some special situations. They are unusual in that they may or may 
not modify the destination register.  These instructions compare the value of intReg[ regA ] with 
0, and either do nothing, if a relation does not hold, or copy the second operand into intReg[ regC 
]. 
An integer operate instruction of the form 
 opcode $regA, $regB, $regC; 

means 
 if ( relation holds for intReg[ regA ] ) 
  intReg[ regC ] = intReg[ regB ]; 

An operate instruction of the form 
 opcode $regA, constant, $regC; 
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means  
 if ( relation holds for intReg[ regA ] ) 
  intReg[ regC ] = constant; 

Opcodes can be “cmoveq” (conditional move if equal to 0), “cmovne” (conditional move if not 
equal to zero), “cmovlt” (conditional move if less than 0), “cmovle” (conditional move if less than 
or equal to 0), “cmovgt” (conditional move if greater than 0), “cmovge” (conditional move if greater 
than or equal to 0), “cmovlbs” (conditional move if the low bit is set), and “cmovlbc” (conditional 
move if the low bit is clear). 

§4.8  Special instructions 
Special instructions have the form 
 opcode constant; 

The only special instruction we will use directly is the call_pal instruction, with the operand 
CALL_PAL_CALLSYS.  Essentially this instruction, with this operand causes the invocation of a 
function in the operating system.  Additional information is passed in registers a0, a1, ... a5, to 
specify the request (in a0) and parameters to the request.  The operating system passes the result 
back in register v0. 

§4.9  Pseudoinstructions 
It is also possible to write some things that look like real instructions, but are not.  They are what 
are called pseudoinstructions.  The assembler translates them into different real instructions. They 
are recognised by the assembler to make assembly language easier to write and more readable. 
The ldiq (load immediate quadword) pseudoinstruction has the form 
  ldiq $regA, constant; 

This pseudoinstruction has the effect of loading the constant into the register.  In fact it is translated 
into a ldq instruction of the form 
  ldq $regA, displacement($gp); 

The assembler creates a table, containing all the constants, and makes the gp (global pointer) 
register point to this table.  The constant can be accessed as a displacement from this register. 
For small constants, there are other ways of loading the constant into a register.  The clr, mov or 
negq pseudoinstructions can be used to load zero, an 8 bit positive, or 8 bit negative constant into a 
register. The lda (load address) instruction can be used to load a 16 bit signed constant into a 
register, by making the base register, register 31. 
The clr (clear) pseudoinstruction has the form 
 clr $regC; 

and clears the specified register.  It translates into  
 bis $zero, $zero, $regC; 

The mov (move) pseudoinstruction has the form 
 mov $regB, $regC; 

or 
 mov constant, $regC; 

and moves the contents of register regB or an 8 bit unsigned constant into register regC. It 
translates into  
 addq $zero, $regB, $regC; 

or 
 addq $zero, constant, $regC; 

The negq (negate) pseudoinstruction has the form 
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 negq $regB, $regC; 

or 
 negq constant, $regC; 

and negates the contents of register regB or an 8 bit unsigned constant and stores the result in 
register regC. It translates into  
 subq $zero, $regB, $regC; 

or 
 subq $zero, constant, $regC; 
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5. Use of registers 
To make life safer for all concerned, there are conventions that drivers of motor vehicles are meant 
to satisfy:  Drive on the left hand side of the road, don’t exceed the speed limit, give way to traffic 
crossing from the right, stop at a red light, etc.  There are similar conventions for the use of registers 
on the Alpha.  It is possible to write code that does not satisfy these conventions, but you are likely 
to get into trouble if you do, especially if the program is the work of more than one programmer. 
Most of the conventions related to registers are to do with how they are used with function calls, 
and we will deal with these conventions more fully at that time.  However, lets give a rough 
description now. 
$t0-$t11 Temporary registers, used to hold temporary values, when evaluating expressions, etc. 
$s0-$s5 Saved registers, used to hold the values of local variables in functions. 
$a0-$a5 Argument registers, used to pass parameters to functions. 
$v0 Value register, used to return the result of a function. 
$ra Return address register, used to hold the return address of a function. 
$gp Global pointer register, used to point to the table of constants. 
$sp Stack pointer register, used to point to the top of the stack used to allocate space for 

functions. 
$zero Zero register, that always contains the value zero.  Attempting to write to this register 

has no effect. 
It is imortant to realise that on return from a function, the values of temporary registers, 
argument registers, and the $v0 and $ra registers may have been altered.  Thus you cannot 
keep important data in these registers across function invocations.  Only the saved registers, 
stack pointer register and global pointer register can be guaranteed to have the same value on 
return from a function that they had before the invocation. 
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6. Programs, sections and blocks 
§6.1  Overall structure 
An assembly language program starts with an optional entry point specification (default, start of the 
code section), followed by a sequence of import statements, sections and blocks. 
 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
import "../IMPORT/string.lib.s"; 
import "../IMPORT/number.lib.s"; 
import "../IMPORT/io.lib.s"; 
 
// char buffer[ BUFFERSIZE + 1 ]; 
// void main() { 
//  while ( TRUE ) { 
//   print( "Type some input: " ); 
//   if ( readline( buffer, BUFFERSIZE ) == null ) 
//    break; 
//   print( "The input was: " ); 
//   print( buffer ); 
//   newline(); 
//   } 
//  print( "Bye!" ); 
//  exit( 0 ); 
//  } 
block main uses proc { 
 abs { 
  BUFFERSIZE = 200; 
  } abs 
 const { 
  align; 
 message1: 
  asciiz "Type some input: "; 
  align; 
 message2: 
  asciiz "The input was: "; 
  align; 
 message3: 
  asciiz "Bye!\n"; 
  } const 
 data { 
  align; 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
  } data 
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 code { 
 public enter: 
   { 
  loop: 
   ldiq $a0, message1; 
   bsr  IO.print.enter; 
   ldiq $a0,  buffer; 
   ldiq $a1, BUFFERSIZE; 
   bsr  IO.readLine.enter; 
   beq  $v0, end; 
   ldiq $a0, message2; 
   bsr  IO.print.enter; 
   ldiq $a0, buffer; 
   bsr  IO.print.enter; 
   bsr  IO.newline.enter; 
   br  loop; 
  end: 
   } 
   { 
   ldiq $a0, message3; 
   bsr  IO.print.enter; 
   } 
   { 
   clr  $a0; 
   bsr  Sys.exit.enter; 
   } 
  } code 
 } block main 

So in the above program, the entry point is the label enter, within the block main. 
An absolute section contains declarations of symbolic names for constants.  Using symbolic names 
provides a way of making our programs easy to read.  For example, we can declare symbolic names 
for registers. 
A code section is used to specify instructions to execute. 
A constant section is used to specify the data for string constants, etc. 
A data section is used to specify the space for global variables.  It is often used for global arrays. 
A local section is used to specify the offsets for local variables for functions, fields of a record 
(class), etc.  Basically it is used to specify the offsets of data in any kind of compound data 
structure. 
A block is a named compound object, composed of sections, sub-blocks, etc.  A block is often used 
to contain all the code for a function. 

§6.2  Allocating space for global variables 
So long as our program is small, we can use the saved registers to store the values of variables.  
However, registers can only be used to contain simple values, such as integers, characters, boolean 
values, etc.  Arrays and strings are too big to be stored in a register, and have to be stored in 
memory.  Also, it is fairly easy to run out of registers to use for simple variables, because there are 
only 6 saved registers.  Space for string constants can be allocated in the constant section.  Space 
for variables and arrays can be allocated in the data section.  To allocate space, we need an 
alignment statement, a label to name the memory, then a memory allocation statement.  We can 
initialise memory, by specifying a data type, followed by the initial value, then a “;”. 
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 const { 
  align; 
 message1: 
  asciiz "Type some input: "; 
  align; 
 message2: 
  asciiz "The input was: "; 
  } const 

Data types can be keywords such as byte, ubyte, quad, ascii, asciiz, etc, to allocate space for a 
signed byte, unsigned byte, signed quadword, unterminated ASCII string, null terminated ASCII 
string, etc. 
Apart from the data types corresponding to strings, memory allocation instructions allocate the 
appropriate amount of memory in the relevant section (1 byte for byte and ubyte, 2 bytes for word 
and uword, 4 bytes for long and ulong, 8 bytes for quad and uquad, 4 bytes for float, 8 bytes for 
double).  The difference between the signed and unsigned variants is to do with checking the value 
is in range.  For example byte requires a value that is between -0x80 and +0x7f, while ubyte 
requires a value that is between 0 and +0xff.  In fact there is no checking for quad and uquad. 
For ascii the number of bytes allocated is equal to the length of the string, and the contents is the 
data within the string.  The asciiz directive is similar, except an extra zero byte is allocated and 
added on the end. 
If we miss out the initial value, we get data that is initially zero. 
 data { 
 c: quad; 
 d: quad; 
  } data 

We can allocate blocks of memory, by declaring an array: 
 data { 
  align; 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
  } data 

Uninitialised memory statements usually only occur within a data or local section. 
Alignment statements can be used to round the current address up to a multiple of the size of a 
specified type.  This is needed because data has to be aligned appropriately, for it to be accessed.  
Generally, it is a good idea to align data labels to quadwords, no matter what the size of the data.  If 
labels are not at least aligned to longwords, then the memory display in the simulator will be 
confused. 
Exercise  DATAREP4 
Suppose we have the following alpha assembly language 
data { 
  align; 
 message: 
  asciiz "0x12\n"; 
 value: 
  quad 0x123456789a; 
 } data 
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 Indicate the contents of each byte of memory in hexadecimal. 

0x1000000  0x1000008  

0x1000001  0x1000009  

0x1000002  0x100000a  

0x1000003  0x100000b  

0x1000004  0x100000c  

0x1000005  0x100000d  

0x1000006  0x100000e  

0x1000007  0x100000f  

The label message, is at address 0x1000000 
Exercise DATAREP5 
Suppose we have the following alpha assembly language 
data { 
 value1: 
  quad -3;  // Note this is negative! 
 value2: 
  quad 1046; // Note this is decimal! 
 } data 

 Indicate the contents of each byte of memory in hexadecimal. 
0x1000000  0x1000008  

0x1000001  0x1000009  

0x1000002  0x100000a  

0x1000003  0x100000b  

0x1000004  0x100000c  

0x1000005  0x100000d  

0x1000006  0x100000e  

0x1000007  0x100000f  

Assume the label value1, is at address 0x1000000, and integers are represented in little-endian 
format. 
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Exercise TESTPROG_BIN 
Show the values of memory and registers used by the following program, each time the program 
reaches the labels showData1 and showData2. 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
 
block main uses proc { 
 abs { 
  c   = s0; 
  value  = s1; 
  textPtr  = s2; 
  } abs 
 data { 
  align; 
 output: 
  byte[ 8 ]; 
 endOutput: 
  byte 0; 
  } data 
 code { 
 public enter: 
  ldiq  $value,  13;  // Decimal 13. 
  ldiq  $textPtr,  endOutput; 
  clr  $c; 
   { 
  do: 
  showData1: 
   and  $value,  1,  $c; 
   srl  $value,  1; 
   addq  $c,   '0'; 
   subq  $textPtr,  1; 
   stb  $c,   ($textPtr); 
  while: 
   bne  $value,  do; 
  end: 
   } 
  showData2: 
   { 
  while: 
   ldbu  $a0,  ($textPtr); 
   beq  $a0,  end; 
  do: 
   bsr  Sys.putChar.enter; 
   addq  $textPtr, 1; 
   br  while; 
  end: 
   } 
  clr  $a0; 
  bsr  Sys.exit.enter; 
  } code 
 } block main 
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pc      
$c      
$value      
$textPtr      
      
0x1000004      
0x1000005      
0x1000006      
0x1000007      
0x1000008      

What is the output from the above program? 
What does the above program achieve in general, with the number 13 replaced by an an arbitrary 
number? 

§6.3  Creating code for simple statements and expressions 
Suppose we want to increment a simple variable “a”, stored in memory.  We have to write 
something like the following: 
 ldiq $t0, a;  // Get the address of a 
 ldq $t1, ($t0); // Get the value of a 
 addq $t1, 1;  // Increment the value 
 stq $t1, ($t0); // Store the result back in a 

So you can see that even the most trivial of high level statements becomes rather involved in 
assembly language.  Of course if we used a register to store the value of the variable “a”, we could 
have done it in one instruction. 
The code to load a constant value into register tempReg is just 
 ldiq $tempReg, constantValue; 

The code to load the address of a global variable “a” into register tempReg is just 
 ldiq $tempReg, a; 

The code to load the value of a global variable “a” into register tempReg is just 
 ldiq $tempReg, a; 
 ldq $tempReg, ($tempReg); 

To generate code for an assignment statement “lhs = rhs;”, we have to perform the following 
algorithm 

Generate code to evaluate the rhs into t0; 
Generate code to evaluate the address of the lhs into t1; 
stq $t0, ($t1); // Store the value back in the lhs address 

The above code can be improved if we can access the lhs address as a displacement from a register. 
To generate code to evaluate an expression corresponding to a binary expression “leftOpd opr 
rightOpd”, into register tempReg, we have perform the following recursive algorithm 
 Generate code to evaluate leftOpd into tempReg; 
 Generate code to evaluate rightOpd into tempReg + 1; 
 opcode $tempReg, $tempReg+1; // perform the operation 
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For example, to evaluate a * b + c * d, we would write 
 ldiq $t0, a; 
 ldq $t0, ($t0); 
 ldiq $t1, b; 
 ldq $t1, ($t1); 
 mulq $t0, $t1; 
 ldiq $t1, c; 
 ldq $t1, ($t1); 
 ldiq $t2, d; 
 ldq $t2, ($t2); 
 mulq $t1, $t2; 
 addq $t0, $t1; 

So long as we don’t run out of registers, this recursive algorithm is straightforward.  The algorithm 
for unary operators is similar. 
Data is often packed together within a single quadword or longword.  For example, the opcode, 
register numbers and displacement for a load or store instruction are packed together as fields 
within a longword.  How can we extract the data out?  We can use a left shift instruction to shift the 
data to the high end of a quadword (deleting the information to the left of the field), then a right 
shift instruction to shift the data to the low end of the quadword  (deleting the information to the 
right of the field, and putting the data in the right place).  We use a srl (shift right logical) 
instruction if we want to interpret the data as an unsigned number, and a sra (shift right arithmetic) 
instruction if we want to interpret the data as a signed number. 
For example, to extract the opcode, regA, regB and displacement fields of a load/store instruction, 
we could write: 
 data { 
  align; 
 instruction: 
  long; 
  align; 
 opcode: 
  quad; 
  align; 
 regA: 
  quad; 
  align; 
 regB: 
  quad; 
  align; 
 displacement: 
  quad; 
  } data 
 code { 
  ...   
  ldiq $t0, instruction; 
  ldl $t0, ($t0); 
 
  sll $t0, 64-32, $t1; 
  srl $t1, 64-32+26, $t1; 
  ldiq $t2, opcode; 
  stq $t1, ($t2); 
 
  sll $t0, 64-26, $t1;  
  srl $t1, 64-26+21, $t1; 
  ldiq $t2, regA; 
  stq $t1, ($t2); 
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  sll $t0, 64-21, $t1;  
  srl $t1, 64-21+16, $t1; 
  ldiq $t2, regB; 
  stq $t1, ($t2); 
 
  sll $t0, 64-16, $t1;  
  sra $t1, 64-16+0, $t1; 
  ldiq $t2, displacement; 
  stq $t1, ($t2); 
  ... 
  } code 

§6.4  Creating control structures 
It is possible to build if statements and loops out of branch statements. 
To create an if statement corresponding to 
 if ( condition ) 
  statement1; 
 else 
  statement2; 

we write 
 { 
 if: 
  Generate code to evaluate the condition,  
  and branch to the label “then” if the condition is true  
  or “else” if the condition is false; 
 then: 
  Generate code for statement1; 
  br end; 
 else: 
  Generate code for statement2; 
 end: 
 } 

The label names are arbitrary, but using the names “if”, “then”, “else” and “end” gives the 
appearance of a high level control structure. 
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For example, assuming all variables are stored in memory, 
 if ( a != 0 ) 

  count = count + 1; 

 else 

  count = count - 1; 

translates into  
 { 
 if: 
  ldiq $t0, a; 
  ldq $t0, ($t0); 
  beq $t0, else; 
 then: 
  ldiq $t0, count; 
  ldq $t1, ($t0); 
  addq $t1, 1; 
  stq $t1, ($t0); 
  br end; 
 else: 
  ldiq $t0, count; 
  ldq $t1, ($t0); 
  subq $t1, 1; 
  stq $t1, ($t0); 
 end: 
 } 

To create an if statement corresponding to 
 if ( condition ) 
  statement1; 

we write 
 { 
 if: 
  Generate code to evaluate the condition,  
  and branch to the label “then” if the condition is true  
  or “end” if the condition is false; 
 then: 
  Generate code for statement1; 
 end: 
 } 

To create a while statement corresponding to 
 while ( condition ) 
  statement1; 

we write 
 { 
 while: 
  Generate code to evaluate the condition,  
  and branch to the label “do” if the condition is true  
  or “end” if the condition is false; 
 do: 
  Generate code for statement1; 
  br while; 
 end: 
 } 
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For example consider 
 result = 1; 
 i = 0; 
 while ( i < n ) { 
  result = result * a; 
  i++; 
  } 

Suppose “result”, “i”, “n” and “a” are represented by registers $result, $i, $n and $a.  Then we can 
write 
 mov  1, $result; 
 clr  $i; 
 { 
 while: 
  cmplt $i, $n, $t0; 
  blbc  $t0, end; 
 do: 
  mulq  $result, $a; 
  addq  $i, 1; 
  br  while; 
 end: 
 } 

To create a for statement corresponding to 
 for ( initialisation; condition; increment ) 
  statement1; 

we write 
 { 
 for: 
  Generate code for initialisation; 
 while: 
  Generate code to evaluate the condition,  
  and branch to the label “do” if the condition is true  
  or “end” if the condition is false; 
 do: 
  Generate code for statement1; 
 continue: 
  Generate code for the increment; 
  br while; 
 end: 
 } 

For example consider what is effectively the same code as the above while loop 
 result = 1; 
 for ( i = 0; i < n; i++ ) 
  result = result * a; 

Then we generate much the same code, but with a couple of additional labels, to make it look more 
like a for loop. 
 mov  1, $result; 
 { 
 for: 
  clr  $i; 
 while: 
  cmplt $i, $n, $t0; 
  blbc  $t0, end; 
 do: 
  mulq  $result, $a; 
 continue: 
  addq  $i, 1; 
  br  while; 
 end: 
 } 
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Break or continue statements inside the substatement should be translated into “br end;” and “br 
continue;” respectively. 
We can also translate switch statements into assembly language.  If the cases are closely packed 
within a limited range, we can use what is called a branch table. 
 switch ( expr ) { 
  case 0: 
   stmt0; 
   break; 
  case 1: 
   stmt1; 
   break; 
  case 2: 
   stmt2; 
   break; 
  ... 
  default: 
   defaultStmt; 
  } 

translates into 
 { 
 switch: 
  Generate code to evaluate expr into $t0; 
  blt  $t0, default; 
  cmple $t0, n, $t1; 
  blbc  $t1, default; 
  ldiq  $t1, branchTable; 
  s8addq $t0, $t1, $t1; // $t1 = 8 * $t0 + $t1 
  ldq  $t1, ($t1); 
  jmp  ($t1);  // Jump to the address contained in $t1 
 branchTable: 
  quad case0; 
  quad case1; 
  quad case2; 
  ... 
 case0: 
  Generate code to evaluate stmt0; 
  br end; 
 case1: 
  Generate code to evaluate stmt1; 
  br end; 
 case2: 
  Generate code to evaluate stmt2; 
  br end; 
... 
 default: 
  Generate code for defaultStmt; 
 end: 
 } 
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If the cases are sparse, we can use compare and branch instructions. 
 { 
 switch: 
  Generate code to evaluate expr into $t0; 
  cmpeq $t0, 0, $t1; 
  blbs  $t1, case0; 
  cmpeq $t0, 1, $t1; 
  blbs  $t1, case1; 
  cmpeq $t0, 2, $t1; 
  blbs  $t1, case2; 
  ... 
  br  default; 
 case0: 
  Generate code to evaluate stmt0; 
  br end; 
 case1: 
  Generate code to evaluate stmt1; 
  br end; 
 case2: 
  Generate code to evaluate stmt2; 
  br end; 
 ... 
 default: 
  Generate code for defaultStmt; 
 end: 
 } 

What are the “{ ... }” braces for?  they create a local “scope”.  The labels inside “{ ... }” can only be 
referred to inside “{ ... }”, so we can use the same identifiers for labels in different control 
statements. 
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7. Strings 
Strings are represents as a sequence of bytes.  In C, the end of a string is indicated by a zero byte.  I 
will use the same convention. 
We can create string constants by using the asciiz directive.  The z in asciiz means zero byte 
terminated. 
 const { 
  align; 
 message1: 
  asciiz "Type some input: "; 
  align; 
 message2: 
  asciiz "The input was: "; 
  } const 

If we want to create new strings, we need to allocate space, using the byte directive. 
 data { 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
  } data 

The string is limited to a maximum length of BUFFERSIZE, because the space we have allocated is 
BUFFERSIZE + 1 bytes (the extra byte being for the zero byte terminator).  It is not easy to manage 
arbitrary length strings, because we then need memory management - dynamically allocating and 
freeing memory to hold the string. 
The address of an element of a string can be accessed as the base address plus the index.  To get the 
character at that address, we need an extra load.  Note that the load instruction is ldbu, to load a 
byte, not a quadword. 
 ldiq $t0, buffer; 
 addq $i, $t0, $t0;  // Gives the address of the ith element. 
 ldbu $t0, ($t0);  // Give the value of the ith element. 

We can write code to read in a line of input, and store it in the buffer. Don’t worry about the code 
for entry to or exit from the function. just look at the code for the body of the function.  If the input 
line is too long, the excess input is deleted.  Normally, the address of the end of the text is returned.  
However, if end of file (represented by typing ctrl-D) is reached,  null is returned instead. 
 // char *readLine( char *s, int max ) { 
 //  register int i = 0; 
 //  register int c; 
 //  while ( TRUE ) { 
 //   c = getchar(); 
 //   if ( c < 0 || c == '\n' ) 
 //    break; 
 //   if ( i < max ) 
 //    s[ i ] = c; 
 //   i++; 
 //   } 
 //  if ( i > max ) 
 //   i = max; 
 //  s[ i ] = '\0'; 
 //  if ( c < 0 ) 
 //   return NULL; 
 //  else 
 //   return s + i; 
 //  } 
 //  
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 public block readLine uses proc { 
  abs { 
   s  = s0; 
   max  = s1; 
   i  = s2; 
   c  = s3; 
   } abs 
  code { 
  public enter: 
   lda  $sp, -sav4($sp); 
   stq  $ra, savRet($sp); 
   stq  $s0, sav0($sp); 
   stq  $s1, sav1($sp); 
   stq  $s2, sav2($sp); 
   stq  $s3, sav3($sp); 
  body: 
   mov  $a0, $s;     // Pointer to character 
   mov  $a1, $max;    // Size of input buffer 
   clr  $i;      // Count of characters read 
   { 
   while: 
    bsr  Sys.getChar.enter;  // Get a char 
    mov  $v0, $c; 
    blt  $c,  end; 
    cmpeq $c,  '\n', $t0; // Break if newline 
    blbs $t0, end; 
   do: 
    { 
    if: 
     cmplt $i, $max, $t0; // If within buffer 
     blbc $t0, end; 
    then: 
     addq $s,  $i, $t0;  // Store the character 
     stb  $c,  ($t0); 
    end: 
    } 
    addq $i, 1;     // Increment count 
    br while; 
   end: 
   } 
   { 
   if: 
    cmple $i, $max, $t0;  // If not within buffer 
    blbs $t0, end; 
   then: 
    mov  $max, $i; 
   end: 
   } 
   addq $s,  $i,  $t0; 
   stb  $zero, ($t0);   // Append null char 
   { 
   if: 
    bge  $c,  else; 
   then: 
    clr  $v0; 
    br  end; 
   else: 
    mov  $t0, $v0; 
   end: 
   } 
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  return: 
   ldq  $s3, sav3($sp); 
   ldq  $s2, sav2($sp); 
   ldq  $s1, sav1($sp); 
   ldq  $s0, sav0($sp); 
   ldq  $ra, savRet($sp); 
   lda  $sp, +sav4($sp); 
   ret; 
   } code 
  } block readLine 

The following function compares two strings.  It returns a number that is < 0, == 0, > 0, if s < t, s 
== t, s >  t, in the normal sort order. 
 // int compare( char *s, char *t ) { 
 //  while ( *s == *t && *s != 0 ) { 
 //   s++; 
 //   t++; 
 //   } 
 //  return *s - *t; 
 //  } 
 public block compare uses proc { 
  abs { 
   s  = a0; 
   t  = a1; 
   } abs 
  code { 
   public enter: 
   body: 
    { 
    while: 
     ldbu $t0, ($s); 
     ldbu $t1, ($t); 
     cmpeq $t0, $t1, $t2; 
     blbc $t2, end; 
     beq  $t0, end; 
    do: 
     addq $s,  1; 
     addq $t,  1; 
    continue: 
     br  while; 
    end: 
    } 
    subq $t0, $t1, $v0; 
   return: 
    ret; 
   } code 
  } block compare 
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The following function returns the length of a null terminated string. 
 // int length( char *s ) { 
 //  int len = 0; 
 //  while ( *s != 0 ) { 
 //   len++; 
 //   s++; 
 //   } 
 //  return len; 
 //  } 
 public block length uses proc { 
  abs { 
   s  = a0; 
   len  = s0; 
   } abs 
  code { 
   public enter: 
    lda  $sp, -sav1($sp); 
    stq  $ra, savRet($sp); 
    stq  $s0, sav0($sp); 
   body: 
    { 
    for: 
     clr  $len; 
    while: 
     ldbu $t0, ($s); 
     beq  $t0, end; 
    do: 
     addq $len, 1; 
     addq $s, 1; 
    continue: 
     br  while; 
    end: 
    } 
    mov  $len, $v0; 
   return: 
    ldq  $s0, sav0($sp); 
    ldq  $ra, savRet($sp); 
    lda  $sp, +sav1($sp); 
    ret; 
   } code 
  } block length 
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The following function copies the null terminated string stored at address t to address s. 
 // char *copy( char *s, char *t ) { 
 //  while ( ( *s = *t ) != 0 ) { 
 //   s++; 
 //   t++; 
 //   } 
 //  return s; 
 //  } 
 public block copy uses proc { 
  abs { 
   s  = a0; 
   t  = a1; 
   } abs 
  code { 
   public enter: 
   body: 
    { 
    while: 
     ldbu $t0, ($t); 
     stb  $t0, ($s); 
     beq  $t0, end; 
    do: 
     addq $s,  1; 
     addq $t,  1; 
    continue: 
     br  while; 
    end: 
    } 
   return: 
    mov  $s,  $v0; 
    ret; 
   } code 
  } block copy 
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Exercise UPI 
Suppose we have the following Alpha assembly language program: 
block main uses proc { 
 data { 
  memory1: 
   quad  0x697075; 
  memory2: 
   quad  0;  
  } data 
 code { 
 public enter: 
  ldiq  $t0,  memory1; 
  ldiq  $t1,  memory2; 
  { 
  while: 
   ldbu  $t2, ($t0); 
   beq  $t2, end; 
  do: 
   subq  $t2, 'a'; 
   addq  $t2, 'A'; 
   stb  $t2, ($t1); 
   addq  $t0, 1; 
   addq  $t1, 1; 
   br  while; 
  end: 
  } 
 showData: 
  ldiq  $a0,  memory1; 
  bsr  IO.print.enter; 
  bsr  IO.newline.enter; 
  ldiq  $a0,  memory2; 
  bsr  IO.print.enter; 
  bsr  IO.newline.enter; 
  clr  $a0; 
  bsr  Sys.exit.enter; 
  } code 
 } block main 

Indicate the values in hexadecimal of the computer memory when the program reaches the label 
“showData”.  Assume “memory1” corresponds to address 0x1000288, and “memory2” corresponds 
to address 0x1000290. 

0x10003f0    

0x10003f1    

0x10003f2    

0x10003f3    

Indicate the output generated by the program.  Note that the bytes printed are interpreted as 
characters, not integers. 
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Exercise TESTPROG_REVERSE1 
Suppose we have the following Alpha assembly language program 
block main uses proc { 
 data {  // Address 0x1000000 
  align; 
 buffer: 
  asciiz "tide"; 
  } data 
 code { 
 public enter: 
  ldiq $s0, buffer; 
  mov $s0, $s1; 
  mov $s0, $s2; 
   { // loop 1 
  while: 
   ldbu $t0, ($s1); 
   beq $t0, end; 
  do: 
   addq $s1, 1; 
   br while; 
  end: 
   } 
 showData1: 
  subq $s1, 1; 
   { // loop 2 
  while: 
   cmpult $s0, $s1, $t2; 
   blbc $t2, end; 
  do: 
   ldbu $t0, ($s0); 
   ldbu $t1, ($s1); 
   stb $t0, ($s1); 
   stb $t1, ($s0); 
  showData2: 
  continue: 
   addq $s0, 1; 
   subq $s1, 1; 
   br while; 
  end: 
   } 
 showData3: 
   { // loop 3 
  while: 
   ldbu $a0, ($s2); 
   beq $a0, end; 
  do: 
   bsr Sys.putChar.enter; 
   addq $s2, 1; 
   br while; 
  end: 
   } 
  mov '\n', $a0; 
  bsr Sys.putChar.enter; 
  clr $a0; 
  bsr Sys.exit.enter; 
  } code 
 } block main 

Display the contents of registers and memory each time the program reaches, but has not executed 
the code at the labels showData1, showData2 and showData3. 
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Indicate the value of the program counter by writing the name of the label (showData1, 
showData2, showData3) it corresponds to. 
Indicate the values of registers and memory either in hexadecimal, or as an ASCII character, 
whichever is appropriate.  The buffer starts at address 0x1000000. 
pc     
$t0     
$t1     
$t2     
$s0     
$s1     
$s2     
     
0x1000000     
0x1000001     
0x1000002     
0x1000003     
0x1000004     

Exercise TESTPROG_HEX 
Indicate the values of registers and memory each time the program reaches the labels showData0, 
showData1 and showData2. 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
 
block main uses proc { 
 abs { 
  numByte  = 2; 
  numNibble  = 2 * numByte; 
  i   = s0; 
  c   = s1; 
  valuePtr  = s2; 
  textPtr  = s3; 
  } abs 
 data { 
  align; 
 text: 
  byte [ numNibble ]; 
  align; 
 value: 
  word 0x7c3; 
  } data 
 code { 
 public enter: 
  ldiq  $valuePtr, value; 
  ldiq  $textPtr,  text; 
 showData0: 
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   { 
  for: 
   mov  0,  $i; 
  while: 
   cmplt $i,  numByte, $t0; 
   blbc  $t0,  end; 
  do: 
   addq  $valuePtr, $i, $t1;  
   ldbu  $c,  ($t1); 
   and  $c,  0xf, $t2; 
   srl  $c,  4,  $t3; 
   sll  $i,  1,  $t4; 
   addq  $textPtr, $t4, $t5; 
   stb  $t2,  0($t5); 
   stb  $t3,  1($t5); 
  showData1: 
  continue: 
   addq  $i,  1; 
   br  while; 
  end: 
   } 
 
   { 
  for: 
   mov  numNibble-1,  $i; 
  while: 
   blt  $i,  end; 
  do: 
   addq  $textPtr, $i, $t6;  
   ldbu  $c,  ($t6); 
    { 
   if: 
    cmplt $c,  10,  $t7; 
    blbc  $t7,  else; 
   then: 
    addq  $c,  '0'; 
    br  end; 
   else: 
    addq  $c,  'a'; 
    subq  $c,  0xa; 
   end: 
    } 
   mov  $c,  $a0; 
   bsr  Sys.putChar.enter; 
  continue: 
   subq  $i, 1; 
   br  while; 
  end: 
   } 
    
 showData2: 
  bsr  Sys.exit.enter; 
  } code 
 } block main 
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pc     
$t0     
$t1     
$t2     
$t3     
$t4     
$t5     
$i     
$c     
$valuePtr     
$textPtr     
     
0x1000000     
0x1000001     
0x1000002     
0x1000003     
     
0x1000008     
0x1000009     
0x100000a     
0x100000b     

Indicate the output generated for this specific value of 0x7c3, and the overall purpose of the 
program, for an arbitrary value. 



Alpha Computer Architecture 30 January 2007 Page 7-58 

Strings 

Exercise TESTPROG_OCT 
Indicate the values of registers and memory each time the program reaches the labels showData0 
and showData1. 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
 
block main uses proc { 
 abs { 
  c   = s0; 
  value  = s1; 
  textPtr  = s2; 
  } abs 
 data { 
 valueMem: 
  quad 0x19c; 
  align; 
 text: 
  byte [ 8 ]; 
  } data 
 code { 
 public enter: 
  ldiq  $textPtr, text; 
  ldiq  $t0,  valueMem; 
  ldq  $value, ($t0); 
 showData0: 
  stb  $zero, ($textPtr); 
   { 
  do: 
   and  $value, 0x7,  $t1; 
   addq  $t1,  '0',  $c; 
   srl  $value, 3; 
   addq  $textPtr, 1; 
   stb  $c,  ($textPtr); 
  showData1: 
  while: 
   bne  $value, do; 
  end: 
   } 
 
   { 
  while: 
   ldbu  $a0,  ($textPtr); 
   beq  $a0,  end; 
  do: 
   bsr  Sys.putChar.enter; 
  continue: 
   subq  $textPtr, 1; 
   br  while; 
  end: 
   } 
    
  bsr  Sys.exit.enter; 
  } code 
 } block main 
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pc     
$t0     
$t1     
$c     
$value     
$textPtr     
     
0x1000000     
0x1000001     
0x1000002     
0x1000003     
     
0x1000008     
0x1000009     
0x100000a     
0x100000b     

Indicate the output generated for this specific value of 0x19c, and the overall purpose of the 
program, for an arbitrary value. 
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8. Running the Alpha Simulator 
Suppose you want to run an Alpha assembly language program.  First, start up the Alpha simulator 
application, for example by double clicking on simulator.jar.  A window appears. 

 
You can create additional windows, by duplicating an existing window. 

§8.1  Specifying the code files to execute 

 
You have to specify not only your program that you want to execute, but also two other programs - 
the kernel code and PAL code. 
The easy way of specifying the three programs is via a configuration file - basically a text file 
containing three lines, with the names of the three files, relative to the directory of the configuration 
file.  The file names are in UNIX format, with path components separated by “/”, and the parent 
directory specified by “..”.  It is possible to specify the three files individually, using file dialogs, 
but the usual way is just to specify the configuration file.  The three assembly language files must 
have the suffixes “.pal.s”, “.kernel.s” and “.user.s”, for the PAL, kernel, and user files.  For 
example, we could have a configuration file, alpha.config 
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 ../SYSTEM/palcode.pal.s 
 ../SYSTEM/kernelcode.kernel.s 
 usercode.user.s 

in the same directory as the user code. 
Before running a new program, you must specify the configuration file by using the 
Load File Specification ... N 
menu item.  You can type N (Macintosh) or ctrl-N (Windows), rather than using the menu.  You 
have to repeat this each time you want to run a different user program. 

 
You can quit the simulator by using the 
Quit Q 
menu item. 
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§8.2  Loading and Execution 

 
You can assemble and load the code into the simulator’s memory, by using the 
Load Code L 
menu item.  You have to repeat this each time you modify the source code for the user program.  
Otherwise you will continue to run the old program. 
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You can place watchpoints on addresses in memory and even most registers.  What this means is 
that the simulator will stop executing if it tries to access the memory or register with a watchpoint. 
You can reinitialise registers and memory by the 
Reinitialise I 
menu item. 
You can start executing your program from the beginning, by using the 
Run/Rerun X 
Run/Rerun Update E 
menu items.  In fact the PAL initialisation code executes first, then kernel initialisation code, and 
finally your user code.  The update option updates the trace window as it executes, but executes 
more slowly. 
You can use Run/Rerun directly, if you have never used Load File Specification or Load Code.  
You will be prompted for a configuration file, and the three files will be assembled and loaded. 
Your program will stop executing if it attempts to access data with an associated watchpoint, or it 
tries to read input and no input is available, or it reaches completion (by invoking the exit system 
call), or something goes wrong (an exception occurs).   
You can also stop execution by using the 
Stop  . 
menu item. 
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If your program stops you can resume execution from the point at which it stopped by using the 
Run/Continue R 
Run/Continue Update U 
menu items. 
It is also possible to single step through your program by using the 
Step S 
menu item.  Windows are updated after each instruction. 
The 
Reverse Run/Continue R 
Reverse Run/Continue Update U 
Reverse Step S 
menu items can be used to run the simulator in reverse.  You can only run in reverse for a few 
thousand instructions.  Because input/output takes thousands of instructions to execute, this is not as 
useful as you might hope. 

§8.3  Reading from the Simple Terminal 
If you type input into the simple terminal window, it can be edited, by backspacing and retyping.  
Characters cannot be read until you type return. 

 

§8.4  Editing, Copying and Pasting 

 
Text in windows can be selected by clicking, and shift clicking, or clicking and dragging.  In 
register and memory windows, the text can be edited, by typing hexadecimal characters in the hex 
display, or textual characters in the text display.  The cursor moves as you type. 
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Whole lines of register and memory windows can be copied and pasted.  Within the simulator, this 
copies the numerical value, not the text.  If the copy size does not equal the paste size, the data is 
truncated, or zero extended at the high memory end. 
It is possible to paste the address of the memory copied, rather than the contents. 
Lines of text can be copied from the simulator, and pasted in text documents. 
It is also possible to use 
Save Selection ... 
menu item in the Window menu to save a portion of a window in a text file. 

§8.5  Searching 
You can search for text in a window by using the 
Find ... F 
menu item. 

 
When pasting into the text field, you can paste either text, the value, or the address. 
The match is usually case sensitive, but can be made insensitive.  Regular expressions are 
permitted.  You can search for either text, an address or a value. 
You can select a previous search, using the menu displayed by clicking to the right of the text field. 
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§8.6  Setting Watchpoints 

 
You can select a range of memory or registers, and set and clear watchpoints, using the 
Set Watchpoints W 
Clear Watchpoints W 
menu items. 
You can also specify the watch flags that will be set, when you set a watchpoint, by specifying the 
Watchpoint Setting Flags ... 
The default is to stop on write or execute, but not on read. 
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§8.7  Formatting 

 
You can select a range of memory or registers and specify how the data is disassembled.  For 
example, you can disassemble data as numbers in binary, octal, decimal or hexadecimal, as 
instructions, as characters, as symbolic addresses, etc.  You can also specify whether memory is 
divided into longwords or quadwords, when disassembled. 
You can also specify the font size of all text (for people with poor eyes), and the background color 
of lines (to highlight the lines). 
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§8.8  Managing Windows 

 
The Window menu can be used to open, close, delete, and duplicate windows.  You can bring 
windows to the front, or move them to the back.  To bring a window to the front, you can use 0, 
1, 2, etc. 
To specify which panel to display a panel in the current window, you can use 0, 1, 2, etc. 
The most important panels are: 
0 The trace panel 
A panel that displays a trace of the recently executed instructions. 
1 The simple terminal panel 
A panel  to for performing input/output. 
2 The register panel 
A panel to display the contents of the registers. 
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5 The user memory panel 
A panel to display the contents of user memory - the user program, global data, and function stack.  
There are also panels to display PAL memory, kernel memory, and the page tables. 
These panels display the information needed to debug your program.  Look at their contents, add 
watchpoints, and single step through critical code, or it will take 20 times as long to debug your 
program. 

§8.9  What the Kernel and PAL code do 
The kernel code represents a very simple operating system.  The only services this simple operating 
system provides are reading and writing characters, and terminating the user program. 
PAL code can be thought of as implementing instructions that are too complex to be implemented 
in hardware.  We execute a call_pal instruction to execute a PAL code function.  For example 
“call_pal CALL_PAL_CALLSYS” implements the “callsys” instruction to switch from executing 
user code to execute kernel (operating system) code.  “call_pal CALL_PAL_RETSYS” implements 
the “retsys” instruction to switch from executing kernel code to execute user code. 
For example, to read a single character, we might write two instructions in our user program 
 ldiq  $a0, CALLSYS_GETCHAR; 
 call_pal CALL_PAL_CALLSYS; 

These might assemble into the following two instructions 
 ldq     $a0,    +0000($gp) 
 call_pal 0000083 

(The constant CALLSYS_GETCHAR is stored in the global table, and the ldiq pseudoinstruction is 
replaced by a ldq instruction.  The constant CALL_PAL_CALLSYS is replaced by its value. 
 U 0000000000800000   ldq    $a0,    +0000($gp) 
 U 0000000000800004   call_pal 0000083 

The first column indicates the modes the processor is executing in - PAL (P) or non-PAL ( ), user 
(U) or kernel (K).  the second column is the value of the program counter.  On the right is a 
disassembly of the instruction executed. 
The PAL code switches over to the kernel. 
CALL_PAL_USER 0x3 Exception 
           .Code_Callsys.code {: 
           .Code_Callsys.enter: 
PU 0000000000000318    hw_mtpr  $t0,    temp06 
PU 000000000000031c    addq   $zero,   01,     $t0 
PU 0000000000000320    hw_mtpr  $zero,   currMode 
PK 0000000000000324    hw_mtpr  $sp,    usp 
PK 0000000000000328    hw_mfpr  $sp,    ksp 
PK 000000000000032c    lda    $sp,    -0038($sp) 
PK 0000000000000330    stq    $t0,    +0000($sp) 
PK 0000000000000334    hw_mfpr  $t0,    intEnb 
PK 0000000000000338    stq    $t1,    +0008($sp) 
PK 000000000000033c    hw_mfpr  $t0,    prevPC 
PK 0000000000000340    stq    $t0,    +0010($sp) 
PK 0000000000000344    stq    $gp,    +0018($sp) 
PK 0000000000000348    hw_mfpr  $gp,    kgp 
PK 000000000000034c    addq   $zero,   05,     $t0 
PK 0000000000000350    hw_mfpr  $t0,    kentry[entInt]($t0) 
PK 0000000000000354    hw_mtpr  $t0,    prevPC 
PK 0000000000000358    hw_mfpr  $t0,    temp06 
PK 000000000000035c    hw_rei 

The kernel code invokes a function to read a character. 
          .CallSysHandler.code {: 
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          .CallSysHandler.enter: 
 K 0000000002000020   lda    $sp,    -0018($sp) 
 K 0000000002000024   stq    $ra,    +0000($sp) 
          .CallSysHandler.body: 
 K 0000000002000028   cmpult  $a0,    03,     $t0 
 K 000000000200002c   blbc   $t0,    .CallSysHandler.error 
 K 0000000002000030   ldq    $t0,    +0000($gp) 
 K 0000000002000034   s8addq  $a0,    $t0,    $t0 
 K 0000000002000038   ldq    $pv,    +0000($t0) 
 K 000000000200003c   jsr    $ra,    ($pv),   0040 

The function to read a character itself invokes PAL code to actually get the character. 
           .SysGetChar.code {: 
           .SysGetChar.enter: 
 K 0000000002000008    call_pal 0000001 
CALL_PAL_KERNEL 0x1 Exception 
            .Code_GetChar.code {: 
            .Code_GetChar.enter: 
PK 0000000000000368     call_xfc XFC_GETCHAR 
PK 000000000000036c     hw_rei 

It then returns to the kernel. 
 K 000000000200000c    ret    $zero,   ($ra),   0000 
 K 0000000002000040   br    $zero,   .CallSysHandler.return 
          .CallSysHandler.return: 
 K 0000000002000048   ldq    $ra,    +0000($sp) 
 K 000000000200004c   lda    $sp,    +0018($sp) 

Finally, it returns to the user program via PAL code. 
 K 0000000002000050   call_pal 000003d 
CALL_PAL_KERNEL 0x3d Exception 
           .Code_Retsys.code {: 
           .Code_Retsys.enter: 
PK 00000000000002a0    ldq    $gp,    +0018($sp) 
PK 00000000000002a4    ldq    $t0,    +0010($sp) 
PK 00000000000002a8    hw_mtpr  $t0,    prevPC 
PK 00000000000002ac    hw_mtpr  $zero,   intEnb 
PK 00000000000002b0    addq   $zero,   01,     $t0 
PK 00000000000002b4    hw_mtpr  $t0,    currMode 
PU 00000000000002b8    lda    $sp,    +0038($sp) 
PU 00000000000002bc    hw_mtpr  $sp,    ksp 
PU 00000000000002c0    hw_mfpr  $sp,    usp 
PU 00000000000002c4    hw_rei 

And after this point it will execute the user code immediately after instruction 
 call_pal CALL_PAL_CALLSYS; 

So when we run the simulator, we find that as soon as we attempt to perform input or output, we 
end up executing large amounts of PAL code and kernel code.  With a real operating system, the 
kernel code is far more complex.  All this code appears in the trace window.  We can more or less 
just ignore it. 
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9. Integer arrays 
Integer arrays can be created by declaring an array of quadwords. 
// int array[ DATASIZE ]; 
 array: 
  quad[ DATASIZE ]; 

The above allocates space for DATASIZE quadwords, namely 8 * DATASIZE bytes. 
The address of an element of an integer array can be accessed as the base address plus 8 times the 
index.  To get the integer at that address, we need an extra load.  Note that the load instruction is 
ldq, to load a quadword. 
 ldiq $t0, array; 
 mulq $i, 8, $t1; 
 addq $t1, $t0, $t0;  // Gives the address of the ith element. 
 ldq $t0, ($t0);  // Give the value of the ith element. 

In fact, there is special support for array indexing.  The s8addq instruction is an instruction 
especially designed for indexing arrays of quadwords.  It multiplies the first operand (the array 
index) by 8 (the size of a quadword), adds it to the second operand (the address of the array) and 
stores the result (the address of the appropriate element) in the third operand. Thus it can be used to 
compute the address of an array element, given the index and base address.  To get the value, we 
then need a load instruction. 
 ldiq  $t0, array; 
 s8addq $i, $t0, $t0;  // Gives the address of the ith element. 
 ldq  $t0, ($t0);  // Give the value of the ith element. 

There is a similar instruction, s4addq, used to index arrays of longwords.  Of course, the addq 
instruction can be used to index simple arrays of bytes.  For arrays with elements of size other than 
1, 4, or 8, we need an explicit multiplication of the index by the size of the elements.  If the size of 
the elements is a power of 2, the multiplication can be done by a shift. 
The following function prints out the elements of an array of quadwords. 
// void printArray( int[] array, int max ) { 
//  int i; 
//  for ( i = 0; i < max; i++ ) 
//   printf( "%8d", array[ i ] ); 
//  newline(); 
//  } 
  
block printArray uses proc { 
 abs { 
  array = s0; 
  max  = s1; 
  i  = s2; 
  } abs 
 const { 
   align; 
  format: 
   asciiz "%8d"; 
  } const 
 code { 
 public enter: 
  lda  $sp, -sav3($sp); 
  stq  $ra, savRet($sp); 
  stq  $s0, sav0($sp); 
  stq  $s1, sav1($sp); 
  stq  $s2, sav2($sp); 
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 body: 
  mov  $a0, $array; 
  mov  $a1, $max; 
  { 
  for:       // for ( i = 0; i < max; i++ ) 
   clr  $i; 
  while: 
   cmplt $i,  $max, $t0; 
   blbc $t0, end; 
  do: 
   ldiq $a0, format; 
   s8addq $i,  $array, $t0;// printf( "%8d", array[ i ] ); 
   ldq  $a1, ($t0); 
   bsr  IO.printf.enter; 
  continue: 
   addq $i, 1; 
   br  while; 
  end: 
  } 
  bsr  IO.newline.enter;  // newline(); 
 return: 
  ldq  $s2, sav2($sp); 
  ldq  $s1, sav1($sp); 
  ldq  $s0, sav0($sp); 
  ldq  $ra, savRet($sp); 
  lda  $sp, +sav3($sp); 
  ret; 
  } code 
 } block printArray 

The following main program reads in a sequence of decimal integers, converts them into internal 
form, and puts them in the array data.  It then sorts them into order, using a bubble sort, and prints 
out the array each time the bubble sort performs a swap. 
// int BUFFERSIZE = 20; 
// int DATASIZE = 10; 
// char buffer[ BUFFERSIZE + 1 ]; 
// int array[ DATASIZE ]; 
// void main() { 
//  int maxArray; 
//  for ( maxArray = 0; maxArray < DATASIZE; maxArray++ ) { 
//   print( "Enter a number (or return to finish): " ); 
//   readLine( buffer, BUFFERSIZE ); 
//   if ( buffer[ 0 ] == 0 ) 
//    break; 
//   array[ maxArray ] = Number.fromString( buffer, 10 ); 
//   } 
//  print( "Sorting by bubble sort:\n" ); 
//  printArray( array, maxArray ); 
//  for ( int i = maxArray - 1; i > 0; --i ) { 
//   for ( int j = 0; j < i; j++ ) { 
//    int temp1 = array[ j ]; 
//    int temp2 = array[ j + 1 ]; 
//    if ( temp1 > temp2 ) { 
//     array[ j ] = temp2; 
//     array[ j + 1 ] = temp1; 
//     printArray( array, maxArray ); 
//     } 
//    } 
//   newline(); 
//   } 
//  exit( 0 ); 
//  } 
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block main uses proc { 
 abs { 
  BUFFERSIZE = 20; 
  DATASIZE = 10; 
  maxArray = s0; 
  i   = s1; 
  j   = s2; 
  } abs 
 const { 
 message1: 
  asciiz "Enter a number (or return to finish): "; 
 message2: 
  asciiz "Sorting by bubble sort:\n"; 
  } const 
 data { 
  align; 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
 array: 
  quad [ DATASIZE ]; 
  } data 
 code { 
 public enter: 
  // for ( maxArray = 0; maxArray < DATASIZE; maxArray++ ) { 
  { 
  for: 
   clr  $maxArray; 
  while: 
   cmplt $maxArray, DATASIZE, $t0; 
   blbc $t0, end; 
  do: 
   // print( "Enter a number (or return to finish): " ); 
   ldiq $a0, message1; 
   bsr  IO.print.enter; 
   // readLine( buffer, BUFFERSIZE ); 
   ldiq $a0, buffer; 
   ldiq $a1, BUFFERSIZE; 
   bsr  IO.readLine.enter; 
   ldiq $t0, buffer;  // if ( buffer[ 0 ] == 0 ) 
   ldbu $t0, ($t0); 
   beq  $t0, end;  //  break; 
   ldiq $a0, buffer;  // array[ maxArray ] =  
        //  Number.fromString( buffer, 10 ); 
   ldiq $a1, 10; 
   bsr  Number.fromString.enter; 
   ldiq $t0, array; 
   s8addq $maxArray, $t0, $t0; 
   stq  $v0, ($t0); 
  continue: 
   addq $maxArray, 1; 
   br  while;  // } 
  end: 
  } 
  ldiq $a0, message2;   // print( "Sorting by bubble sort:\n" ); 
  bsr  IO.print.enter; // printArray( array, maxArray ); 
  ldiq $a0, array; 
  mov  $maxArray, $a1; 
  bsr  printArray.enter; 
  // for ( int i = maxArray - 1; i > 0; --i ) { 
  { 
  for:  
   subq $maxArray, 1, $i; 
  while: 
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   beq  $i,  end; 
  do: 
   // for ( int j = 0; j < i; j++ ) { 
   { 
   for:  
    clr  $j; 
   while: 
    cmplt $j,  $i,  $t0; 
    blbc $t0, end; 
   do: 
    ldiq $t0, array; 
    s8addq $j,  $t0, $t1; 
    addq $j,  1,  $t2; 
    s8addq $t2, $t0, $t2; 
    ldq  $t3, ($t1); // int temp1 = array[ j ]; 
    ldq  $t4, ($t2); // int temp2 = array[ j + 1 ]; 
    { 
    if:     // if ( temp1 > temp2 ) { 
     cmple $t3, $t4, $t5; 
     blbs $t5, end; 
    then: 
     stq  $t3, ($t2);//  array[ j ] = temp2; 
     stq  $t4, ($t1);//  array[ j + 1 ] = temp1; 
     ldiq $a0, array; // printArray( array, maxArray ); 
     mov  $maxArray, $a1; 
     bsr  printArray.enter; 
    end:     //  } 
    } 
   continue: 
    addq $j,  1; 
    br  while; //  } 
   end: 
   } 
   bsr  IO.newline.enter; // newline(); 
  continue: 
   subq $i,  1; 
   br  while;  // } 
  end: 
  } 
  clr  $a0;    // exit( 0 ); 
  bsr  Sys.exit.enter; 
  } code 
 } block main 

Exercise TESTPROG_MINMAX 
Indicate the values of registers and memory each time the program reaches the label showData.  
The label array is at address 0x1000000. 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
 
block main uses proc { 
 abs { 
  ARRAYSIZE  =  5; 
  i   = s0; 
  arrayPtr  = s1; 
  a   = s2; 
  b   = s3; 
  x   = s4; 
  } abs 
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 data { 
 array: 
  quad 0x3; 
  quad 0x7; 
  quad 0x6; 
  quad 0x1; 
  quad 0x9; 
  } data 
 code { 
 public enter: 
   { 
  for: 
   mov  1, $i; 
   ldiq  $arrayPtr, array; 
   ldq  $a,  ($arrayPtr); 
   ldq  $b,  ($arrayPtr); 
  while: 
   cmplt $i, ARRAYSIZE, $t0; 
   blbc  $t0, end; 
  do: 
   s8addq $i, $arrayPtr, $t1; 
   ldq  $x, ($t1); 
    { 
   if: 
    cmple $a,  $x,  $t2; 
    blbs  $t2,  end; 
   then: 
    mov  $x,  $a; 
   end: 
    } 
    { 
   if: 
    cmplt $b,  $x,  $t3; 
    blbc  $t3,  end; 
   then: 
    mov  $x,  $b; 
   end: 
    } 
  showData: 
  continue: 
   addq  $i,  1; 
   br  while; 
  end: 
   } 
  clr  $a0; 
  bsr  Sys.exit.enter; 
  } code 
 } block main 
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$t0     
$t1     
$t2     
$t3     
$i     

$arrayPtr     

$a     

$b     

$x     

     
0x1000000     
0x1000008     
0x1000010     
0x1000018     
0x1000020     

Indicate the overall purpose of the program, for arbitrary data in the array. 
Exercise TESTPROG_COMPACT 
Suppose we have the following Alpha assembly language program 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
 
data { 
 arrayStart: // Address 0x1000000 
  quad 0x0; 
  quad 0x2; 
  quad 0x7; 
  quad 0x0; 
  quad 0x6; 
 arrayFinish: 
 } data 
 
block doIt uses proc { 
 abs { 
  start = a0; 
  finish = a1; 
  cond = t0; 
  value = t1; 
  p = t2; 
  q = t3; 
  } abs 
 code { 
  public enter: 
   { 
   for: 
    mov $start, $p; 
    mov $start, $q; 
   while: 
    cmplt $p, $finish, $cond; 
   showData: 
    blbc $cond, end; 
   do: 
    { 
    if: 
     ldq $value, ($p); 
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     beq $value, end; 
    then: 
     stq $zero, ($p); 
     stq $value, ($q); 
     addq $q, 8; 
    end: 
    } 
   continue: 
    addq $p, 8; 
    br while; 
   end: 
   } 
   ret; 
  } code 
 } block doIt 
 
// int main() { 
//  doIt( arrayStart, arrayFinish ); 
//  exit( 0 );  
//  } 
block main uses proc { 
 code { 
 public enter: 
  ldiq $a0, arrayStart; 
  ldiq $a1, arrayFinish; 
  bsr doIt.enter; 
  clr $a0; 
  bsr Sys.exit.enter; 
  } code 
 } block main 

 Display the contents of registers and memory each time the program reaches, but has not 
executed the code at the label showData. 

 Indicate the values of registers and memory in hexadecimal. 
 The label arrayStart corresponds to address 0x1000000. 
$start       
$finish       
$cond       
$value       
$p       
$q       
       
0x1000000       
0x1000008       
0x1000010       
0x1000018       
0x1000020       

 Indicate what the whole program achieves, in general, for arbitrary data in the array. 
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10. Writing and Debugging Assembly language Programs 
How can we go about writing and debugging assembly language programs?  Well, unless you are 
writing things that can only be written in assembly language (because even high level languages 
such as C don’t have the expressive power to represent your algorithm), then the most efficient way 
of developing your program is to first write it in a high level language, debug the algorithm, and 
then translate your high level program into assembly language.  Most students don’t believe me, but 
this really does save enormous amounts of time.  It is very difficult debugging assembly language, 
because it is so unstructured, and there are no validity checks.  Get the algorithm correct first, and 
the translation into assembly language is easy. 
What language should you use to prototype your assembly language program?  The best choice is 
definitely C, because it is very close to assembly language in its expressive power.  You can do 
almost anything in C, while most high level languages have checks that stop you treating addresses 
as integers, storing arbitrary data at an address, etc.  C is a wonderful language for doing very low 
level things.  For example, the only languages I know that are suitable for writing a memory 
manager, with garbage collection, are C and assembly language, and it is 100 times easier to write it 
in C than assembly language. 
However, if you don’t know C, then use another language, such as Java, but try and use only the 
very low level features of the language.  For example, store your strings as arrays of bytes, do your 
own conversion between strings and numbers, etc. 
Document your assembly language for a function with the code written in a high level language. 
Split your assembly language program up into functions, and invoke and declare the functions using 
the standard function invocation conventions.  Save and restore the s0, s1, s2, ... registers properly.  
Do not store values in temporary registers, invoke a function, then expect the values to still be there 
on return from the function.  Always pass the parameters in a0, a1, a2, ...  and return the result in 
v0.  Make very sure that the amount of space allocated on entry to a function is identical to the 
amount of space deallocated on exit, and that there is sufficient space allocated.  If you don’t get 
this right, you will get some very obscure bugs, that will be very difficult to find. 
Indent your assembly language, and use appropriate labels to make the control structures absolutely 
clear. 
When you attempt to run your program, make sure that you save the assembly language text file 
before loading the file into the simulator.  Make sure that if you change the assembly language, you 
reload it into the simulator.  Make sure that there are no errors when you reload the program.  If 
there are syntax errors in your program, the parser usually gives a line number.  If it manages to 
parse everything, and then fails at the end, this tends to be a result of having unmatched braces {...}. 
A general rule for debugging any program is to put lots of print statements in, so that you know 
what is happening.  It is not so easy in assembly language, because even printing a string constant is 
nontrivial, printing numbers is difficult, and printing data structures is a major undertaking.  
However, I do supply functions to print strings, convert numbers to strings, and even implement a 
simple printf.  If at all possible, use these.  However, if you are writing assembly language that is 
doing tricky things, such as manipulating the stack to return from multiple levels of function 
invocation, you might find it difficult to use print statements. 
To make life easy, the simulator provides you with a trace of the instructions executed. 
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If your program stops at some point, due to an exception occurring, look at the last instruction it 
tried to execute.  If it was a load or store instruction, and it generated a DTB_MISS_NATIVE or 
D_FAULT exception, then maybe the value of the base register used to compute the memory 
address is wrong.  See what value it has.  See what code modified its value, and whether it makes 
sense. 
When your program stops at some point, you have to map the last instruction in the trace window 
back to a line in your assembly language.  Sometimes it is obvious, because the labels are also 
shown in the trace window.  Sometimes it is not so clear.  The trace window shows the value of the 
program counter.  Look for this address in the user memory window, and you will see the 
disassembly of your program, including the relevant labels.  It is much easier to see how this relates 
to your original assembly language.  However, you will still find that pseudoinstructions have been 
replaced by different real instructions.  For example, “ldiq $reg, XXX” will appear as “ldq $reg, 
YYY($gp);”. 
The simulator permits you to view and change the contents of registers and memory.  For each 
register, the register window contains the name of the register, its value in hexadecimal and as 
characters, and a disassembly in whatever format you choose. 
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For memory, it contains the address, contents of memory in hexadecimal and as characters, and a 
disassembly in whatever format you choose (the default is as instructions for code, and hex for 
data). 
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The user memory window contains the user program code. 

 
Further down are the constants, the global table, and the global variables. 
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At the bottom of the user memory window is the stack.  If you are invoking functions, especially 
recursive ones, you might want to look at the stack. 
It is possible to associate “watchpoints” with memory addresses and most registers, by selecting the 
data and using the Watchpoints menu.  Every time your program attempts to access the data (read, 
write or execute, as specified) at the address, it stops, so that you can view the data, and even alter 
it.  To alter the data, click on either the hexadecimal or character disassembly, and type appropriate 
characters. 
If you want to check that your program is computing a value correctly, place a write watchpoint on 
that data, and run your program.  Check the value each time it stops, then continue its execution, by 
selecting Run/Continue.  Similarly, you can place watchpoints on instructions, so that an attempt to 
execute the instruction causes the program to stop. 
Once a program has stopped, you can continue execution by selecting Run/Continue, or you can 
single step through your program by selecting Step.  For small programs or portions of programs 
that do not attempt input/output, this works very well.  However, you do not want to single step 
through code performing input/output and making system calls, because it is too time consuming. 
Unfortunately, if you modify your program, and reload the code, all watchpoints disappear.  Setting 
them up again can be a little time consuming.  To get around this, it is possible to put watchpoints 
into your program in assembly language.  The call_pal instruction 
  call_pal  CALL_PAL_BPT; 

causes your program to stop execution.  A higher level way of doing this is to invoke the 
Sys.breakpoint function. 
  bsr Sys.breakpoint.enter; 

You can then restart it by selecting Run/Continue or Step. 
The latest version of the simulator permits you to run the simulator backwards, so that you can see 
the values of registers and memory a bit earlier than the point at which you rpogram stopped.  this is 
useful so long as the recent code does not perform input/output.  The trouble is that input/output 
executes large numbers of instructions, and the simulator only permits you to reverse a few 
thousand instructions. 
Another feature that can be useful is the ability to search for text in the simulator windows.  For 
example, you can search using regular expressions in the latest version of the simulator. 
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11. Function invocations and declarations 
§11.1  Overview 
How do we generate assembly language for function invocations and declarations?  While it is not 
the full story, it roughly amounts to the following. 
For the invocation of a function: 
• Generate code to evaluate the parameters and store them in a standard place.  On the Alpha, 

the first six parameters are stored in the argument registers a0, a1, ... a5. 
• Generate a function invocation instruction that saves the program counter in a standard place 

and sets the program counter to the address of the start of the function.  On the Alpha, the bsr 
(branch to subroutine) instruction is used to invoke a function.  The bsr instruction usually 
saves the old program counter in the ra (return address) register. 

• Generate code to use the result of the function, assuming the result of the function is stored in 
a standard place.  On the Alpha, functions return their result in the v0 register. 

For example, to execute “x = f( 5, 8, 2 );”, we might write: 
 mov 5, $a0; 
 mov 8, $a1; 
 mov 2, $a2; 
 bsr f.enter; 
 ldiq $t0, x; 
 stq $v0, ($t0); 

Control is passed to the function by the execution of the bsr instruction.  On completion of the 
execution of the code for the function, control will be passed back to just after the bsr instruction. 
For the declaration of a function: 
• Generate code for the body of the function.  This code accesses the parameters, modifies local 

and global variables, and stores the return value in a standard place.  On the Alpha, the 
“saved” registers s0, s1, ... s5 are usually used for local variables, and the return value is 
stored in register v0. 

• Generate an instruction to restore the saved program counter, and return to just after the bsr 
instruction used to jump to the start of the function.  On the Alpha, the ret (return) instruction 
is used to return to just after the invocation of the function. 

For example, if the function f returns the sum of its three parameters, we might write: 
//   int f( int a, int b, int c ) { 
//  return a + b + c; 
//  } 
block f uses proc { 
 code { 
 public enter: 
  addq  $a0, $a1, $v0; 
  addq  $v0, $a2; 
  ret; 
  } code 
 } block f 

Because a function may be invoked from more than one place, we need to remember where to 
return to.  Thus we need to use the bsr and ret instructions to enter and return from the function, 
rather than simple branch instructions.  Because a function may be invoked with different 
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parameters, we need to evaluate the parameters and store them in the argument registers, rather than 
accessing them directly. 
# x = f( 5, 8, 2 );

mov 5, $a0;

mov 8, $a1;

mov 2, $a2;

bsr f.enter;

ldiq $t0, x;

stq $v0, ($t0);

# x = f( 3, 4, 5 );

mov 3, $a0;

mov 4, $a1;

mov 5, $a2;

bsr f.enter;

ldiq $t0, x;

stq $v0, ($t0);

//   long f( long a, long b, long c ) {

// return a + b + c;

// }

block f uses proc {

code {

public enter:

addq $a0, $a1, $v0;

addq $v0, $a2;

ret;

} code

} block f

 
Example 
The function 
//   int square( int x ) { 
//  return x * x; 
//  } 
block square uses proc { 
 code { 
 public enter: 
  mulq  $a0, $a0, $v0; 
  ret; 
  } code 
 } block square 

computes the square of its argument. 
It can be invoked as 
// y = square( 5 ); 
 ldiq $a0, 5; 
 bsr square.enter; 
 ldiq $t0, y; 
 stq $v0, ($t0); 

§11.2  The special instructions involved in function invocations 
The Branch to Subroutine (bsr) instruction 
bsr destAddress; 

The program counter is saved in the ra (return address) register, then the program counter is set to 
destAddress. 
There is also a jsr (jump to subroutine) instruction, that can be used when the address of the 
function has to be computed at run time.  We will not use this instruction. 
The Return (ret) instruction 
ret; 

The program counter is set to the contents of the ra (return address) register. 
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§11.3  Function Invocation and Declaration Conventions 
When driving, we follow various conventions.  For example, in New Zealand, we drive on the left 
hand side of the road, we obey the traffic lights, when turning we give way to traffic going straight 
ahead, etc.  It would be essentially impossible to drive on the roads, if nobody bothered about which 
side of the road they drove on.  Similarly, it is necessary to follow publicly agreed upon 
conventions when writing code that has to interface with code generated by compilers or written by 
other people. 
Every computer architecture has standard conventions for invoking and declaring functions.  To 
avoid confusion, the code generated by all compilers must obey these conventions, as must the code 
generated by assembly language programmers. So long as these conventions are obeyed, the writer 
of one function does not have to know about the details of the implementation of other functions.  It 
is sufficient to know what they achieve, their public interface, and that they obey the conventions.  
Most of your program can be written in a high level language, but some functions can be written in 
assembly language, for efficiency reasons, or because the high level language lacks the expressive 
power necessary to represent the algorithm. So long as your assembly language obeys the standard 
conventions, there will be no problem in combining the high level language and assembly language 
code together. 
Conventions related to use of the stack 
Sometimes functions need local memory in which to store the values of local variables.  Arrays 
need to be stored in memory, because they are too big to fit in a register.  Variables passed as 
reference parameters also need to be stored in memory, because they need to have an address.  
Local memory is also used for saving the values of registers, that the function wants to use for other 
purposes. 
Most modern computer languages support recursive functions. We can have many instances of the 
same function that have been invoked but not returned from.  Each invocation needs its own local 
space.  This space, called the activation record, call frame, or stack frame for the function, is 
allocated when the function is invoked, and deallocated when it completes. 
Functions are entered and returned from in a stack-like fashion.  In other words, if function f 
invokes function g which invokes function h, then we must return from function h, before we return 
from function g, and then return from function g, before we return from function f.  We can use a 
stack to allocate the local memory for functions that have been invoked but not returned from. 
function f( ... ) { 
 g( ... ); 
 } 
function g( ... ) { 
 h( ... ); 
 } 
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Stack of activation recordsLow Memory

High Memory Time

Space for g

Space for fSpace for f

Space for g

Space for f

Space for g

Space for f Space for f

Space for h

 
 
On the Alpha, the sp (stack pointer) register is used to point to the “top” of the stack (memory space 
allocated for local space for functions).  The stack in fact grows towards low memory.  We can 
allocate space on the stack by subtracting a constant from the stack pointer register, and deallocate 
space by adding this constant back onto the stack pointer register.  The space for local variables can 
be accessed by using a non-negative displacement from the stack pointer register.  Because it is 
normal to think of the stack growing “up”, it is appropriate, when drawing diagrams, to display low 
addresses at the top of the page, and high addresses at the bottom. 
In the Alpha simulator, you can view the stack by scrolling to the bottom (high address end) of the 
user memory window. 
Conventions for the use of registers on the Alpha 
Some of the most important conventions related to function invocations involve the specification of 
how registers should be used, and whether the invoking or the invoked function has responsibility 
for saving and restoring them. 
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On the Alpha, the main registers are as follows. 
• The program counter. 
 This register points to the address of the next instruction to execute.  It is always longword 

aligned. 
• 32 integer registers. 

0 $v0 This register is used to hold the return value of an integer function. This 
register may be altered by the invoked function, even if it doesn't return a 
result (for example, because the invoked function may invoke another 
function that returns a result). 

1-8 $t0-$t7 These are temporary registers used for expression evaluation within a 
simple statement.  They are not normally used to store data between 
statements.  These registers may be altered by the invoked function, so 
important data can not be left in these registers while another function is 
invoked. 

9-14 $s0-$s5 These are the “saved” registers, usually used to hold the values of local 
variables (in particular, local variables declared as “register variables” in C). 
If the invoked function wishes to use these registers, the invoked function 
must save the registers in its activation record on entry, and restore them on 
exit.  As a consequence, the invoker can behave as if the invoked function 
never altered the registers. 

15 $fp This register is used to hold the frame pointer (address of the base of the 
activation record/stack frame/call frame) if needed.  In most situations, the 
address of the activation record is the same as the top of stack, so the sp 
register can be used as the base address of the activation record, rather than 
the fp register, and the fp register is never set up.  If a function needs to 
dynamically allocate local space in addition to its activation record (for 
example, for a dynamically sized local array), it can set the fp register to the 
base of the activation record, then allocate further space by further 
decrementing the sp register.  The invoked function is responsible for saving 
and restoring this register. 

16-21 $a0-$a5 These registers are used to pass the first six integer type actual parameters.  
The action of setting up these registers for the invoked function overwrites 
the values of the parameters for the invoker.  Hence a function that invokes 
another function must save the values of these registers on entry, either in its 
activation record, or in saved registers. 

22-25 $t8-$t11 These are additional temporary registers used for expression evaluations. 
26 ra This register is used to hold the return address of a function. The program 

counter is saved in this register by the bsr instruction and restored from this 
register by the ret instruction. Hence a function that invokes another 
function must save the value of this register in its activation record on entry, 
and restore it before exit. 

27 $pv This register is used by the jsr pseudoinstruction to hold the entry point of 
the current function.  The jsr pseudoinstruction effectively loads the 
destination address into this register, then does an indirect jump via this 
register.  We will not make use of this register. 
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28 $at This register is used by the UNIX assembler to implement 
pseudoinstructions, such as instructions for which the literal operands are 
outside the range permitted by the real instruction.  It should not be used 
directly by assembly language programmers.  My assembler does not 
actually make use of this register. 

29 $gp This register is used to hold the global pointer. The global pointer points to 
a table containing the values of constants, such as the addresses of functions 
and global variables.  This table is needed because the number of bits used 
to represent a constant in an instruction are too few to represent a 64 bit 
value.  The ldiq pseudoinstruction is converted into a ldq instruction.  The 
constant is stored in the global table, and accessed as an offset from the 
global pointer. 

  The global pointer register is set up by the operating system when the 
program is loaded, and stays constant throughout the execution of the 
program. 

30 $sp This register is used to hold the stack pointer (the address of the “top” of 
stack). The invoked function allocates space for itself on the stack by 
subtracting the size of the activation record from the stack pointer.  On 
return, the invoked function deallocates the stack space by adding the size 
of the activation record to the stack pointer. 

31 $zero Always has the value 0.  
• 32 floating point registers. 
 There are similar conventions for the use of floating point registers.  Registers are divided up 

into registers for arguments, temporary registers, saved registers, and two registers (to allow 
for complex numbers) to store the return value. 

Conventions for invoking functions on the Alpha 
• Evaluate the parameters.  The first six parameters are stored in registers $a0, $a1, $a2, ... $a5.  

(Any additional parameters are stored at the low address end of the activation record of the 
invoker.  However, we will never deal with functions with more than six parameters.) 

• A bsr instruction is used to invoke the function.  The program counter is saved in the $ra 
(return address) register, and the program counter is set to the address of the start of the 
function. 

• The invoker can assume that, after the invocation 
• The result of the function will be in register $v0. 
• The “saved” registers will contain the same values they had before the invocation. 
• The stack pointer register will be the same as it was before the invocation. 

 mov ..., $a0;   // Set up $a0 
 mov ..., $a1;   // Set up $a1 
 mov ..., $a2;   // Set up $a2 
 ...     // ... 
 bsr f.enter;   // Invoke f 
 mov $v0, ...;   // Assign return value 
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Conventions for declaring functions on the Alpha 
• If the function needs any local memory, allocate space for the activation record on the stack 

by subtracting the number of bytes needed from the stack pointer. This is usually done by the 
instruction “lda $sp, -frameSize($sp);”. 

• If the function invokes another function, save the return address register in the activation 
record of the function.  (This is because invoking another function will overwrite the return 
address register.) 

• If the function allocates space for local arrays, save the frame pointer register in the activation 
record of the function. 

• If the function wants to make use of the “saved” registers for its own local variables, or saving 
the arguments, save these registers in the activation record of the function. 

• If the function invokes another function, save the argument registers in “saved” registers.  
(This is better than saving them directly in the activation record, because heavy use is 
normally made of the arguments, and it is faster to access them via registers than from 
memory.) 

• Temporary registers can be used, without needing to save and restore them. 
• Evaluate the body of the function.  Use the saved registers for simple local variables that can 

fit into registers, and are not referred to by “reference”.  Use memory on the stack for local 
arrays, etc. 

• Store the return value in register $v0. 
• Restore any registers that were saved on entry to the function. 
• If the function allocated any local memory for an activation record, deallocate this space by 

adding the size of the space to the stack pointer. This is usually done by the instruction “lda 
$sp, +frameSize($sp)”. 

• A ret (return) instruction is used to return to just after the bsr instruction used to invoke the 
function. 

For convenience, we define a block, proc, with a local section with symbolic names for the offsets 
for the saved values of the $ra, $fp, $s0, $s1, $s2, $s3, $s4, and $s5 registers.  Because a register 
contains 8 bytes, the offsets saveRet, savFP, sav0, sav1, sav2, ... are 0, 8, 16, 24, 32, ... 
block proc { 
 local { 
 protected savRet: quad; 
 protected savFP: quad; 
 protected sav0: quad; 
 protected sav1: quad; 
 protected sav2: quad; 
 protected sav3: quad; 
 protected sav4: quad; 
 protected sav5: quad; 
 protected sav6: quad; 
  } local 
 } block proc 
 
block f uses proc { 
 code { 
 public enter: 
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//----------------------------------------------------------- 
        // Entry Code 
//----------------------------------------------------------- 
  lda $sp, -frameSize($sp); // Allocate space on stack 
  stq $ra, savRet($sp);  // Save $ra on stack 
  stq $s0, sav0($sp);  // Save $s0 on stack 
  stq $s1, sav1($sp);  // Save $s1 on stack 
  ...      // ... 
//----------------------------------------------------------- 
        // Initialisation of variables 
//----------------------------------------------------------- 
 init: 
  mov $a0, $s0;    // Save $a0 in $s0  
  mov $a1, $s1;    // Save $a1 in $s1 
        // (only needed if invokes  
        // another function) 
  ... 
//----------------------------------------------------------- 
        // Body of function 
//----------------------------------------------------------- 
 body: 
  ... 
  mov ..., $v0;    // Store result in $v0 
//----------------------------------------------------------- 
        // Exit Code 
//----------------------------------------------------------- 
 return: 
  ... 
  ldq $s1, sav1($sp);  // Restore $s1 
  ldq $s0, sav0($sp);  // Restore $s0 
  ldq $ra, savRet($sp);  // Restore $ra 
  lda $sp, +frameSize($sp); // Deallocate space on stack 
  ret; 
  } code 
 } block f 

The Layout for a activation record 

Saved ra if this function invokes another function
Saved fp if this function declares local arrays
Saved s0, s1, ... if used by this function

local variables if can't fit in s0, s1, s2, ...

Stack Pointer 
or Frame 
Pointer

Low memory

High memory  
Some portions of the activation record may be omitted, and in fact for simple functions only the 
portion used to save registers is likely to exist.  Even this may be omitted for “leaf” functions that 
do not invoke other functions, and do not use the saved registers. 
The activation record must be padded to a multiple of 8 bytes, so that all data is quadword aligned. 

§11.4  Reference parameters and Pointers 
In C, we can pass the address of a simple variable, array, or record to a function.  These are often 
called reference parameters.  We can also have reference variables, that point to an address of 



Alpha Computer Architecture 30 January 2007 Page 11-92 

 

Function invocations and declarations 

another variable.  In Java we have something equivalent.  Variables of type corresponding to an 
array or class are really pointers to objects in memory. 
By accessing the variable indirectly through the reference, we can modify its value. 
For example, suppose we want to write a function that takes the address of two integer variables as 
parameters, and swaps their values.  We could write: 
void swap( int *a, int *b ) { 
 register int temp; 
 temp = *a; 
 *a = *b; 
 *b = temp; 
 } 

Note: *a means (the contents of) the address pointed to by a.  The parameters a and b are not 
altered, only the data at the addresses pointed to by them. 
In assembly language, this is: 
block swap uses proc { 
 abs { 
  a = a0; 
  b = a1; 
  } abs 
 code { 
 public enter: 
  ldq  $t0,  ($a); 
  ldq  $t1,  ($b); 
  stq  $t1,  ($a); 
  stq  $t0,  ($b); 
  ret 
  } code 
 } block swap 

We can invoke the function swap(), with the addresses of variables as parameters.  In C: 
int x = 3, y = 4; 
void main() { 
 swap( &x, &y ); 
 } 

Note: &x means the address of x. 
In assembly language, this is: 
block main uses proc { 
 data { 
 x: quad 3; 
 y: quad 4; 
  } data 
 code { 
 public enter: 
  ldiq  $a0,  x;  // a0 = &x; 
  ldiq  $a1,  y;  // a1 = &y; 
  bsr  swap.enter;  // swap( &x, &y ); 
  clr  $a0;    // exit( 0 ); 
  bsr  exit.enter; 
  } code 
 } block main 

Suppose we want to make x and y local to a function, then invoke swap.  In C: 
void f() { 
 int x = 3, y = 4; 
 swap( &x, &y ); 
 } 
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We cannot store x and y in registers, because only memory can have an address.  Hence we have to 
store them in the activation record.  In assembly language, this is: 
block f extends proc.sav0 uses proc { 
 local { 
 x: quad; 
 y: quad; 
 size: 
  } local 
 code { 
 public enter: 
  lda  $sp,  -size($sp); // Allocate space 
  stq  $ra,  savRet($sp); // Save ra 
 init: 
  mov  3,  $t0;   // int x = 3; 
  stq  $t0,  x($sp); 
  mov  4,  $t0;   // int y = 4; 
  stq  $t0,  y($sp); 
 body: 
  lda  $a0,  x($sp);  // swap( &x, &y ); 
  lda  $a1,  y($sp); 
  bsr  swap.enter; 
 return: 
  ldq  $ra,  savRet($sp); // Restore ra 
  lda  $sp,  size($sp); // Deallocate space 
  ret 
  } code 
 }block f 

A local section is used to define identifiers corresponding to offsets within an activation record.  It 
does not actually allocate static memory.  The extends option specifies the initial offset for labels in 
the local section of the block.  Space within the activation record can be allocated by memory 
allocation statements, such as quad. 
We could write a function that sums the elements of an array, whose address is passed as a 
parameter. 
// int sum( int[] array, int max ) { 
//  int total = 0; 
//  int i; 
//  for ( i = 0; i < max; i++ ) 
//   total += array[ i ]; 
//  return total; 
//  } 
  
block sum uses proc { 
 abs { 
  array = s0; 
  max  = s1; 
  i  = s2; 
  total = s3; 
  } abs 
 code { 
 public enter: 
  lda  $sp, -sav4($sp); 
  stq  $ra, savRet($sp); 
  stq  $s0, sav0($sp); 
  stq  $s1, sav1($sp); 
  stq  $s2, sav2($sp); 
  stq  $s3, sav3($sp); 
 init: 
  mov  $a0, $array; 
  mov  $a1, $max; 
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 body: 
  clr  $total;     // total = 0; 
  { 
  for:       // for ( i = 0; i < max; i++ ) 
   clr  $i; 
  while: 
   cmplt $i,  $max, $t0; 
   blbc $t0, end; 
  do: 
   s8addq $i,  $array, $t0;//  total += array[ i ]; 
   ldq  $t0, ($t0); 
   addq $total, $t0; 
  continue: 
   addq $i, 1; 
   br  while; 
  end: 
  } 
  mov  $total, $v0; 
 return: 
  ldq  $s3, sav3($sp); 
  ldq  $s2, sav2($sp); 
  ldq  $s1, sav1($sp); 
  ldq  $s0, sav0($sp); 
  ldq  $ra, savRet($sp); 
  lda  $sp, +sav4($sp); 
  ret; 
  } code 
 } block sum 

We can invoke the function sum(), with the address of an array, and the size of the array as 
parameters. 
// int BUFFERSIZE = 20; 
// int DATASIZE = 10; 
// char buffer[ BUFFERSIZE + 1 ]; 
// int array[ DATASIZE ]; 
// void main() { 
//  int maxArray; 
//  int result; 
//  for ( maxArray = 0; maxArray < DATASIZE; maxArray++ ) { 
//   print( "Enter a number (or return to finish): " ); 
//   readLine( buffer, BUFFERSIZE ); 
//   if ( buffer[ 0 ] == 0 ) 
//    break; 
//   array[ maxArray ] = Number.fromString( buffer, 10 ); 
//   } 
//  print( "Sum of elements of the array:\n" ); 
//  printArray( array, maxArray ); 
//  result = sum( array, maxArray ); 
//  printf( " is %d\n", result ); 
//  newline(); 
//  exit( 0 ); 
//  } 
block main uses proc { 
 abs { 
  BUFFERSIZE = 20; 
  DATASIZE = 10; 
  maxArray = s0; 
  result  = s1; 
  i   = s2; 
  j   = s3; 
  } abs 
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 const { 
   align; 
  message1: 
   asciiz "Enter a number (or return to finish): "; 
   align; 
  message2: 
   asciiz "Sum of elements of the array:\n"; 
   align; 
  format: 
   asciiz " is %d\n"; 
  } const 
 data { 
  align; 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
 array: 
  quad [ DATASIZE ]; 
  } data 
 code { 
 public enter: 
  { 
  for:     // for ( maxArray = 0;  
       //  maxArray < DATASIZE; maxArray++ ) { 
   clr  $maxArray; 
  while: 
   cmplt $maxArray, DATASIZE, $t0; 
   blbc $t0, end; 
  do: 
   ldiq $a0, message1; //  print(  
       //  "Enter a number (or return to finish): 
" ); 
   bsr  IO.print.enter; 
   ldiq $a0, buffer; //  readLine( buffer, BUFFERSIZE ); 
   ldiq $a1, BUFFERSIZE; 
   bsr  IO.readLine.enter; 
   ldiq $t0, buffer; //  if ( buffer[ 0 ] == 0 ) 
   ldbu $t0, ($t0); 
   beq  $t0, end; //   break; 
   ldiq $a0, buffer; //  array[ maxArray ] = fromString( 
buffer, 10 ); 
   ldiq $a1, 10; 
   bsr  Number.fromString.enter; 
   ldiq $t0, array; 
   s8addq $maxArray, $t0, $t0; 
   stq  $v0, ($t0); 
  continue: 
   addq $maxArray, 1; 
   br  while; //  } 
  end: 
  } 
  ldiq $a0, message2;  // print( "Sum of elements of the array:\n" ); 
  bsr  IO.print.enter;// printArray( array, maxArray ); 
  ldiq $a0, array; 
  mov  $maxArray, $a1; 
  bsr  printArray.enter; 
  ldiq $a0, array;  // result = sum( array, maxArray ); 
  mov  $maxArray, $a1; 
  bsr  sum.enter; 
  mov  $v0, $result; 
  ldiq $a0, format; 
  mov  $result, $a1; // printf( " is %d\n", result ); 
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  bsr  IO.printf.enter; 
  clr  $a0;   // exit( 0 ); 
  bsr  Sys.exit.enter; 
  } code 
 } block main 

Exercise PRINTARRAY_ERROR 
 The following program is meant to print out the index and value of the elements of the array, 

and should generate the output: 
   0       3 
   1      14 
   2      15 
   3      92 

 However, it has at least 10 errors in it.  Indicate and correct at least 10 errors. 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
import "../IMPORT/proc.h"; 
import "../IMPORT/callsys.lib.s"; 
import "../IMPORT/string.lib.s"; 
import "../IMPORT/number.lib.s"; 
import "../IMPORT/io.lib.s"; 
 
data { 
 array: 
  quad 3; 
  quad 14; 
  quad 15; 
  quad 92; 
 } data 
 
// void printArray( int[] array, int max ) { 
//  int i; 
//  for ( i = 0; i < max; i++ ) 
//   printf( "%4d%8d\n", i, array[ i ] ); 
//  } 
  
block printArray uses proc { 
 abs { 
  array = s0; 
  max = s1; 
  i = s2; 
  } abs 
 const { 
   align; 
  format: 
   asciiz "%4d%8d\n"; 
  } const 
 code { 
 public enter: 
  lda $sp, -sav3($sp); 
  stq $ra, savRet($sp); 
  stq $s0, sav0($sp); 
  stq $s1, sav1($sp); 
  stq $s2, sav2($sp); 
 init: 
  mov $a0, $array; 
 body: 
 
  { 
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  for: 
   clr $i; 
  while: 
   cmplt $i, max, $t0; 
   blbc end; 
  do: 
   ldq $a0, format; 
   ldiq $a1, i; 
   addq $i, $array, $t0; 
   ldq $a3, $t0; 
   bsr IO.printf.enter; 
  continue: 
   addq $i, 1; 
   br end; 
  end: 
  } 
 return: 
  ldq $s2, sav2($sp); 
  ldq $s1, sav1($sp); 
  ldq $s0, sav0($sp); 
  ldq $ra, savRet($sp); 
  lda $sp, +sav2($sp); 
 
  } code 
 } block printArray 
// int main() { 
//  printArray( array, 4 ); 
//  } 
block main uses proc { 
 code { 
 public enter: 
  ldiq $a0, array; 
  ldq $a1, 4; 
  bsr printArray; 
 
  } code 
 } block main 

§11.5  Some programming exercises to try 
Strings 
Write a function void toLower( char *s ) that 
• Converts the characters in a string s to lower case. 
Write a function void substring( char *dest, char *source, int start, int finish ) that 
• Copies the substring of source, from index start, to just before index finish, and stores in dest. 
Write a function int countChars( char *source, char low, char high ) that 
• Counts the characters c in source that satisfy low <= c <= high. 
Write a function void extractChars( char *dest, char *source, char low, char high ) that 
• Copies the characters c in source that satisfy low <= c <= high into the memory starting at the 

address dest. 
Write a function int compareIgnoreCase( char *s, char *t ) that 
• Compares two strings s and t, as if they had been converted to lower case, and returns an 

integer indicating whether s < t, s == t s > t. 
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• Does not modify the strings themselves. 
• Makes use of functions in string.lib.s. 
Write a function int findCharIndex( char c, char *s ) that 
• Find the index of the first occurrence of char c in string s. 
• Returns the index, or -1, if the char is not found. 
Write a function int findLastCharIndex( char c, char *s ) that 
• Find the index of the last occurrence of char c in string s. 
• Returns the index, or -1, if the char is not found. 
Write a function int startsWith( char *prefix, char *s ) that 
• Returns true if the string s starts with the string prefix. 
Write a function int indexOf( char *s, char *t ) that 
• Returns the index of the first occurrence of the string t as a substring in the string s, or -1 if it 

does not occur. 
Write a function void printTrim( char *s, char padChar, int size ) that 
• Prints the first size characters of s, padding with padChar if s has less than size characters. 
Write a function void copyTrim( char *dest, char *source, char padChar, int size ) that 
• Copies the string starting at the address source to the memory starting at the address dest. 
• Copies at most size bytes. 
• Does not copy beyond the null byte terminator. 
• Pads dest with the specified padChar, if source has less than size chars. 
Write a function int compareTrim( char *s, char *t, int size ) that 
• Compares two strings s and t, and returns an integer indicating whether s < t, s == t s > t. 
• Only compares the first size characters. 
Write a function void shiftUp( char c, char *s ) that  
• Shifts the text in s up (right) by one byte, deleting the last character, and inserting character c 

at the start. 
Write a function void shiftDown( char c, char *s ) that  
• Shifts the text in s down (left) by one byte, deleting the first character, and inserting character 

c at the end. 
Write a function void shift( char c, char *s, int count ) that  
• Shifts the text in s down (left) by -count bytes or up (right) by +count bytes, deleting any 

characters that do not fit inside the original string, and filling the space with the character c. 
Write a function char *findCharPosition( char c, char *s ) that 
• Assumes the characters in string s are sorted in order. 
• Returns the position of the first char in string s that is >= c. 
• Returns the address just beyond the end of the string, if all chars are < c. 
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Write a function void insertChar( char c, char *s ) that 
• Assumes the characters in string s are sorted in order. 
• If the char c does not already exist in s, inserts it in the appropriate place, to keep the text 

sorted. 
Write a function void deleteChar( char c, char *s ) that 
• If the char c exists in s, deletes the first occurrence. 
Write a function void deleteAllChar( char c, char *s ) that 
• Deletes all occurrences of c in s. 
Write a function void replaceAllChar( char *s, char from, char to ) that 
• Replaces all occurrences of char from in s by char to. 
Write a function void translate( char *s, char *from, char *to ) that 
• Replaces all occurrences of chars in from in s by the char in the corresponding position in to. 
Write a function void copyOnly( char *dest, char *source, char *onlyChars ) that 
• Copies the chars in source to dest, that exist in onlyChars. 
Write a function void copyExcept( char *dest, char *source, char *exceptChars ) that 
• Copies the chars in source to dest, that do not exist in exceptChars. 
Write a function void copyMerge( char *dest, char *source1, char *source2 ) that 
• Assumes the characters in source1 and source2 are sorted. 
• Copies the characters in source1 and source2 into dest. 
• Maintains the order. 
• Deletes duplicates. 
Memory 
Write a function void fillMem( char *addr, char fillChar, int size ) that 
• Sets size bytes of memory starting at address addr to the specified fillChar. 
Write a function void copyMem( char *dest, char *source, int size ) that 
• Copies the contents of size bytes of memory starting at the address source to the memory 

starting at the address dest. 
• Takes into account that the memory may overlap. 
Write a function void copyMem( char *dest, char *source, int size ) that 
• Copies the contents of size bytes of memory starting at the address source to the memory 

starting at the address dest. 
• Assumes the memory is at an address divisible by 8, and that size is divisible by 8, and uses 

ldq and stq, rather than ldbu and stb. 
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Integer Arrays 
Write a function int sum( int array[], int size ) that 
• Returns the sum of the elements of the array, which contains size elements. 
Write a function int max( int array[], int size ) that 
• Returns the maximum of the elements of the array, which contains size elements. 
• Takes into account that the elements may be negative. 
• Takes into account that the size may be 0. 
Write a function void add( int dest[], int src1[], int src2[], int size ) that 
• Computes the sum of the arrays src1 and src2 and puts the result in the array dest (performing 

vector addition).  All arrays have the specified size elements. 
Write a function int dotProduct( int src1[], int src2[], int size ) that 
• Returns the dot product of the arrays src1 and src2. 
Design a representation for one and two dimensional arrays that includes the size of the array as 
part of the data structure. 
• Rewrite the above functions to use this information, rather than passing the size as a 

parameter. 
• Write functions to perform matrix arithmetic. 
Sorting and Searching 
Write a function int insert( char *array[], char *s ) that 
• Assumes the array contains a sorted list of pointers to strings, and that the end of the list is 

indicated by a null address. 
• Searches for the position of the string s in the array. 
• If it does not find it, inserts it in the array, and shuffles the following elements up to make 

space. 
• Makes sure that the array is still terminated by a null address. 
• Returns the index of the string in the array. 
Write a function void sort(  char *array[] ) that 
• Assumes the array contains a list of pointers to strings, and that the end of the list is indicated 

by a null address. 
• Sorts the elements into order, using a variety of different sorting algorithms. 
Write a function int binarySearch( int array[], int value, int low, int high ) that 
• Assumes that array is a sorted array of integers. 
• Performs a binary search for the value in array, from indexes low to high. 
• Returns the index of the element, or -1, if it is not found. 
• Uses recursion. 
Input/Output, and conversion of text to a number 
Write a function int toNumber( char *s ) that 
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• Processes text in s starting with an optional '+' or '-', followed by decimal digits, and converts 
the decimal number into internal form. 

• Returns the number as its result. 
Write a function int toNumber( char **sVar ) that 
• Does the same as the above, but takes the address of a string variable, rather than the address 

of a string. 
• Updates the variable to point to the text just after the decimal number. 
Write a function int readNum() that 
• Reads characters until it reads in a decimal digit or '+' or '-'. 
• Reads characters until it gets a non-digit. 
• Processes the optional sign and digits to convert a decimal number into internal form. 
• Returns the number as its result. 

§11.6  Recursion 
When writing recursive functions, we have to be particularly careful about saving and restoring 
registers.  There will always be conflicts between the registers used by the invoking and the invoked 
function (they are after all the same function). Consider the following C program, that generates 
Pascal’s triangle rather inefficiently. 
#define MAX 3 
int comb( int n, int r ) { 
 if ( r == 0 || r == n ) 
  return 1; 
 else 
  return comb( n - 1, r - 1 ) + comb( n - 1, r ); 
 } 
 
int main( int argc, char *argv[], char *arge[] ) { 
 register int n, r; 
 for ( n = 0; n <= MAX; n++ ) { 
  for ( r = n; r < MAX; r++ ) 
   printf( "    " ); 
  for ( r = 0; r <= n; r++ ) 
   printf( "%8d", comb( n, r ) ); 
  printf( "\n" ); 
  } 
 } 

This generates output 
    1 
  1  1 
 1  2  1 
1  3  3  1 

and invokes the functions as shown below. 
Enter comb( 0, 0 ) 
Exit comb( 0, 0 ) 
 
Enter comb( 1, 0 ) 
Exit comb( 1, 0 ) 
Enter comb( 1, 1 ) 
Exit comb( 1, 1 ) 
 
Enter comb( 2, 0 ) 



Alpha Computer Architecture 30 January 2007 Page 11-102 

 

Function invocations and declarations 

Exit comb( 2, 0 ) 
Enter comb( 2, 1 ) 
 Enter comb( 1, 0 ) 
 Exit comb( 1, 0 ) 
 Enter comb( 1, 1 ) 
 Exit comb( 1, 1 ) 
Exit comb( 2, 1 ) 
Enter comb( 2, 2 ) 
Exit comb( 2, 2 ) 
 
Enter comb( 3, 0 ) 
Exit comb( 3, 0 ) 
Enter comb( 3, 1 ) 
 Enter comb( 2, 0 ) 
 Exit comb( 2, 0 ) 
 Enter comb( 2, 1 ) 
  Enter comb( 1, 0 ) 
  Exit comb( 1, 0 ) 
  Enter comb( 1, 1 ) 
  Exit comb( 1, 1 ) 
 Exit comb( 2, 1 ) 
Exit comb( 3, 1 ) 
Enter comb( 3, 2 ) 
 Enter comb( 2, 1 ) 
  Enter comb( 1, 0 ) 
  Exit comb( 1, 0 ) 
  Enter comb( 1, 1 ) 
  Exit comb( 1, 1 ) 
 Exit comb( 2, 1 ) 
 Enter comb( 2, 2 ) 
 Exit comb( 2, 2 ) 
Exit comb( 3, 2 ) 
Enter comb( 3, 3 ) 
Exit comb( 3, 3 ) 

We can write comb in assembly language 
// int comb( int n, int r ) { 
//  if ( r == 0 || r == n ) 
//   return 1; 
//  else 
//   return comb( n - 1, r - 1 ) + comb( n - 1, r ); 
//  } 
 
block comb uses proc { 
 abs { 
  n  = s0; 
  r  = s1; 
  temp  = s2; 
  } abs 
 code { 
 public enter: 
  lda  $sp, -sav3($sp); 
  stq  $ra, savRet($sp); 
  stq  $s0, sav0($sp); 
  stq  $s1, sav1($sp); 
  stq  $s2, sav2($sp); 
 init: 
  mov  $a0, $n; 
  mov  $a1, $r; 
 body: 
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  { 
  if: 
   beq  $r, then; 
   cmpeq $r, $n, $t0; 
   blbc  $t0, else; 
  then: 
   mov  1, $v0; 
   br  end; 
  else: 
   subq  $n, 1, $a0; 
   subq  $r, 1, $a1; 
   bsr  comb.enter; 
   mov  $v0, $temp; 
   subq  $n, 1, $a0; 
   mov  $r, $a1; 
   bsr  comb.enter; 
   addq  $v0, $temp; 
  end: 
  } 
 return: 
  ldq  $s2, sav2($sp); 
  ldq  $s1, sav1($sp); 
  ldq  $s0, sav0($sp); 
  ldq  $ra, savRet($sp); 
  lda  $sp, +sav3($sp); 
  ret; 
  } code 
 } block comb 

The activation record for comb is made up of the saved values of ra, s0, s1, s2.  Note that I had to 
move the result of the invocation of “comb( n - 1, r - 1 )” to a saved register, so that it would not get 
overwritten by the invocation of “comb( n - 1, r )”.  The saved register ends up being saved on the 
stack by the entry code for the recursive invocation of the function. 

§11.7  Local Arrays 
We can write functions that declare local arrays.  We need to allocate space for the local array on 
the stack.  Because the stack pointer no longer points to the base of the activation record, we need 
another register, the fp (frame pointer) register to point to the activation record.  The template for 
the assembly language for such functions something like the following: 
block f uses proc { 
 abs { 
  arrayPtr = ...;   // A saved register 
  } abs 
 code { 
 public enter: 
//----------------------------------------------------------- 
// Entry Code 
//----------------------------------------------------------- 
  lda  $sp,  -frameSize($sp); 
  stq  $ra,  savRet($sp); 
  stq  $fp,  savFP($sp); 
  stq  $s0,  sav0($sp); 
  stq  $s1,  sav1($sp); 
  ... 
  mov  $sp,  $fp  // Set frame pointer 
 init: 
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//----------------------------------------------------------- 
// Allocate space for the array 
//----------------------------------------------------------- 
  // Allocate array 
  lda  $sp,  -elementSize*arraySize($sp); 
  mov  $sp,  $arrayPtr; 
//----------------------------------------------------------- 
// Body of function 
//----------------------------------------------------------- 
 body: 
 ... 
//----------------------------------------------------------- 
// Exit Code 
//----------------------------------------------------------- 
 return: 
  // Deallocate array 
  mov  $fp,  $sp;  
  ... 
  ldq  $s1,  sav1($sp); 
  ldq  $s0,  sav0($sp); 
  ldq  $fp,  savFP($sp); 
  ldq  $ra,  savRet($sp); 
  lda  $sp,  +frameSize($sp); 
  ret; 
  } code 
 } block f 

If the array has a fixed size, it is possible to allocate space for the array within the activation record.  
However, the above system allows us to allocate arrays with a size that depends on the parameters 
passed to the function.  If we have local variables in the activation record, they can be accessed by 
offsets from the frame pointer. 

Space for local arrays, if have any
...

Saved $ra, if this function invokes another function
Saved $fp if this function declares local arrays
Saved $s0 if this function uses $s0
Saved $s1 if this function uses $s1
Saved $s2 if this function uses $s2
...
Local variable 0 if used as var param, or not enough saved registers
Local variable 1 if used as var param, or not enough saved registers
Local variable 2 if used as var param, or not enough saved registers
...

$sp

$fp
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For example, the following C program generates Pascal’s triangle a row at a time, storing the result 
in an array. 
int MAX = 3; 
 
void printRow( int data[], int n ) { 
 for ( int i = n; i < MAX; i++ ) 
  print( "    " ); 
 for ( int i = 0; i <= n; i++ ) 
  printf( “%8d”, data[ i ] ); 
 newline(); 
 } 
 
void genRow( int row[], int n ) { 
 int prevRow[ n ]; 
 int r; 
 row[ 0 ] = row[ n ] = 1; 
 if ( n > 0 ) { 
  genRow( prevRow, n - 1 ); 
  for ( r = 1; r < n; r++ ) 
   row[ r ] = prevRow[ r - 1 ] + prevRow[ r ]; 
  } 
 printRow( row, n ); 
 } 
  
 
int main( int argc, char *argv[], char *arge[] ) { 
 int row[ MAX + 1 ]; 
 genRow( row, MAX ); 
 exit( 0 ); 
 } 
  

Translating the above into Alpha assembly language, we get the following. 
// int MAX = 3; 
 
abs { 
 MAX = 3; 
 } abs 
  
// void printRow( int array[], int n ) { 
//  int i; 
//  for ( i = n; i < MAX; i++ ) 
//   print( "    " ); 
//  for ( i = 0; i <= n; i++ ) 
//   printf( "%8d", array[ i ] ); 
//  newline(); 
//  } 
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block printRow uses proc { 
 abs { 
  array = s0; 
  n  = s1; 
  i  = s2; 
  } abs 
 const { 
  space4: 
   asciiz "    "; 
  format: 
   asciiz "%8d"; 
  } const 
 code { 
 public enter: 
  lda  $sp, -sav3($sp); 
  stq  $ra, savRet($sp); 
  stq  $s0, sav0($sp); 
  stq  $s1, sav1($sp); 
  stq  $s2, sav2($sp); 
 init: 
  mov  $a0, $array; 
  mov  $a1, $n; 
 body: 
  { 
  for:      //  for ( i = n; i < MAX; i++ ) 
   mov  $n,  $i; 
  while: 
   cmplt $i,  MAX, $t0; 
   blbc $t0, end; 
  do: 
   ldiq $a0, space4;  //   print( "   " ); 
   bsr  IO.print.enter; 
  continue: 
   addq $i,  1; 
   br  while; 
  end: 
  } 
  { 
  for:      //  for ( i = 0; i < n; i++ ) 
   clr  $i; 
  while: 
   cmple $i,  $n, $t0; 
   blbc $t0, end; 
  do: 
   ldiq $a0, format;  //   printf( "%8d", array[ i ] ); 
   s8addq $i,  $array, $t0; 
   ldq  $a1, ($t0); 
   bsr  IO.printf.enter; 
  continue: 
   addq $i,  1; 
   br  while; 
  end: 
  } 
  bsr  IO.newline.enter; //  newline(); 
 return: 
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  ldq  $s2, sav2($sp); 
  ldq  $s1, sav1($sp); 
  ldq  $s0, sav0($sp); 
  ldq  $ra, savRet($sp); 
  lda  $sp, +sav3($sp); 
  ret; 
  } code 
 } block printRow 
 
// void genRow( int row[], int n ) { 
//     int prevRow[ n ];  
//   // Actually not legal to have dynamic size allocation in C 
//     int r; 
//     row[ 0 ] = row[ n ] = 1; 
//     if ( n > 0 ) { 
//         genRow( prevRow, n - 1 ); 
//         for ( r = 1; r < n; r++ ) 
//             row[ r ] = prevRow[ r - 1 ] + prevRow[ r ]; 
//         } 
//     printRow( row, n ); 
//     } 
//  
block genRow uses proc { 
 abs { 
  row   = s0; 
  n   = s1; 
  prevRow  = s2; 
  r   = s3; 
  } abs 
 code { 
 public enter: 
  lda  $sp, -sav4($sp); 
  stq  $ra, savRet($sp); 
  stq  $fp, savFP($sp); 
  stq  $s0, sav0($sp); 
  stq  $s1, sav1($sp); 
  stq  $s2, sav2($sp); 
  stq  $s3, sav3($sp); 
  mov  $sp, $fp; 
 init: 
  mov  $a0, $row; 
  mov  $a1, $n; 
  sll  $n,  3,  $t0; // int prevRow[ n ]; 
  subq $sp, $t0; 
  mov  $sp, $prevRow; 
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 body: 
  mov  1,  $t0;   // row[ 0 ] = row[ n ] = 1; 
  stq  $t0, ($row); 
  s8addq $n, $row, $t1; 
  stq  $t0, ($t1); 
  { 
  if:       // if ( n > 0 ) { 
   ble  $n,  end; 
  then:      //  genRow( prevRow, n - 1 ); 
   mov  $prevRow, $a0; 
   subq $n,  1, $a1; 
   bsr  genRow.enter; 
   { 
   for:      //  for ( r = 1; r < n; r++ ) 
    mov  1,  $r; 
   while: 
    cmplt $r, $n, $t0; 
    blbc $t0, end; 
   do:      //   row[ r ] =  
         //    prevRow[ r - 1 ]  
         //    + prevRow[ r ]; 
    s8addq $r,  $row, $t0; 
    subq $r,  1,  $t1; 
    s8addq $t1, $prevRow, $t1; 
    ldq  $t1, ($t1); 
    s8addq $r,  $prevRow, $t2; 
    ldq  $t2, ($t2); 
    addq $t1, $t2; 
    stq  $t1, ($t0); 
   continue: 
    addq $r, 1; 
    br  while; 
   end: 
   } 
  end:       //  } 
  } 
  mov  $row, $a0;   // printRow( row, n ); 
  mov  $n,  $a1; 
  bsr  printRow.enter; 
 return:       // } 
  mov  $fp, $sp; 
  ldq  $s3, sav3($sp); 
  ldq  $s2, sav2($sp); 
  ldq  $s1, sav1($sp); 
  ldq  $s0, sav0($sp); 
  ldq  $fp, savFP($sp); 
  ldq  $ra, savRet($sp); 
  lda  $sp, +sav4($sp); 
  ret; 
  } code 
 } block genRow 
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// int main( int argc, char *argv[], char *arge[] ) { 
//     int row[ MAX + 1 ]; 
//     genRow( row, MAX ); 
//  exit( 0 ); 
//     } 
//  
 
block main uses proc { 
 code { 
 public enter: 
  subq $sp, 8*(MAX+1);  // int row[ MAX + 1 ]; 
  mov  $sp, $a0;   // genRow( row, MAX ); 
  mov  MAX, $a1; 
  bsr  genRow.enter; 
  clr  $a0;    // exit( 0 ); 
  bsr  Sys.exit.enter; 
  } code 
 } block main 

Note that it is not possible to return a local array as the result of a function, because the space will 
be deallocated on return from the function, and overwritten by the next function invocation. 
What does the stack look like, when at the maximum level of recursion?  All the arrays for each 
row of Pascal’s triangle have been set up, and the 1’s at each end have been assigned, but the 
middle values have not been filled in. 
General Registers 
Program Counter 
    pc .genRow.end At .genRow.end in genRow( row, 0 ) 

Integer Registers 
    s0 1ffff20 row in genRow( row, 0 ) 
    s1 0 n in genRow( row, 0 ) 
    s2 1fffef0 prevRow in genRow( row, 0 ) (array of size 0) 
    s3 0 r in genRow( row, 0 ) 
    fp 1fffef0 frame pointer for genRow( row, 0 ) 
    sp 1fffef0 top of stack 

Stack Memory 
prevRow in genRow( row, 0 ) (size 0) 
activation record for genRow( row, 0 ) 
01fffef0 .genRow...for saved ra to genRow( row, 1 ) 
01fffef8 1ffff28 saved fp for genRow( row, 1 ) 
01ffff00 1ffff58 saved s0 row in genRow( row, 1 ) 
01ffff08 1 saved s1 n in genRow( row, 1 ) 
01ffff10 1ffff20 saved s2 prevRow in genRow( row, 1 ) 
01ffff18 0 saved s3 r in genRow( row, 1 ) 

prevRow in genRow( row, 1 ) 
01ffff20 1 prevRow[ 0 ] 

activation record for genRow( row, 1 ) 
01ffff28 .genRow...for saved ra to genRow( row, 2 ) 
01ffff30 1ffff68 saved fp for genRow( row, 2 ) 
01ffff38 1ffff98 saved s0 row in genRow( row, 2 ) 
01ffff40 2 saved s1 n in genRow( row, 2 ) 
01ffff48 1ffff58 saved s2 prevRow in genRow( row, 2 ) 
01ffff50 0 saved s3 r in genRow( row, 2 ) 

prevRow in genRow( row, 2 ) 
01ffff58 1 prevRow[ 0 ] 
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01ffff60 1 prevRow[ 1 ] 

activation record for genRow( row, 2 ) 
01ffff68 .genRow...for saved ra to genRow( row, 3 ) 
01ffff70 1ffffb0 saved fp for genRow( row, 3 ) 
01ffff78 1ffffe0 saved s0 row in genRow( row, 3 ) 
01ffff80 3 saved s1 n in genRow( row, 3 ) 
01ffff88 1ffff98 saved s2 prevRow in genRow( row, 3 ) 
01ffff90 0 saved s3 r in genRow( row, 3 ) 

prevRow in genRow( row, 3 ) 
01ffff98 1 prevRow[ 0 ] 
01ffffa0 0 prevRow[ 1 ] 
01ffffa8 1 prevRow[ 2 ] 

activation record for genRow( row, 3 ) 
01ffffb0 .main.enter+10 saved ra to main 
01ffffb8 0 saved fp 
01ffffc0 0 saved s0 
01ffffc8 0 saved s1 
01ffffd0 0 saved s2 
01ffffd8 0 saved s3 

row in main 
01ffffe0 1 row[ 0 ] 
01ffffe8 0 row[ 1 ] 
01fffff0 0 row[ 2 ] 
01fffff8 1 row[ 3 ] 
02000000  Bottom of stack 
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12. Assembling and Disassembling 
§12.1  Overview 
We write a program in assembly language (or even in a high level language).  This program is 
converted into (binary) machine code. 
What is involved in this translation? 
Because it is possible to refer to labels before they are declared, assemblers are usually multi-pass.  
My assembler is composed of the following passes: 
• Lexical analysis and parsing.  The input is analysed into tokens and constructs, and a tree is 

built, representing the structure of the program. 
• Collection of declarations.  A treewalk is performed, to determine the names and nesting of 

blocks, and the identifiers declared within each block.  The mapping of block names to 
blocks, for the list of blocks used by a block also occurs in this pass.  A consequence of this is 
that blocks must be declared before they are used. 

• Mapping of identifiers to declarations.  A treewalk is performed to map all identifier 
applications to identifier declarations.  Essentially this pass looks up the tables generated by 
the previous pass. 

• Address generation.  A treewalk is performed to determine the offset of every statement from 
the base of its section, and the values of all identifiers (possibly as offsets from the base of a 
section).  For local sections, this requires the calculation of the initial offset for the section.  
As a consequence, it must be defined in terms of constants and offsets of labels in previous 
local sections.  Similarly, expressions are computed when they are needed to indicate the size 
of data (the expression in a space allocation statement, or an array declaration). 

• Determination of the address of each section.  The code and data start at addresses that 
depend on whether the code is PAL, kernel, or user code.  The constant and global table 
follows immediately after the code. 

• Code generation.  A treewalk is performed to generate code.  At this stage, all identifiers must 
be defined, in terms of absolute addresses. 

Each pass generates errors, with the offending construct indicated, and a line number.  The line 
number is often one line after the real error. 
For example, a program generated the following error messages.  A “;” was missing on line 233, 
which generated a syntax error, but was reported as an error on line 234.  The fact that ldiq was 
mistyped as ldi was not picked up until address generation time, because it was only in this pass that 
an attempt was made to determine the opcode corresponding to its name.  
Assembling USER file "/Home Machine/Data/ALPHACODE2.05/SIMPLE/TESTPROG ERROR/user
code.user.s" ... 
Parsing ...  
usercode.user.s : 40 : Syntax Error 
ge1;||||bsr||print.enter;||||ldiq|$a0, |buffer||||ldiq|$a1,|BUFFERSIZE;||| 
    ||||   ||            ||||    |     |      ||||^^^^|    |           ||| 
Generating Declarations ...  
Looking Up Declarations ...  
Generating Addresses ...  
usercode.user.s : 47 : Invalid opcode "ldi" 
ter;||||ldiq|$a0,|buffer;||||bsr||print.enter;||||ldi||$a0,|NEWLINE;||||bsr||putC 
    ||||    |    |       ||||   ||            ||||^^^^^^^^^^^^^^^^^^||||   ||    
     



Alpha Computer Architecture 30 January 2007 Page 12-112 

Assembling and Disassembling 

Generating Code ...  
Completed Generating Code ...  
User Error: Error in compilation of /Home Machine/Data/ALPHACODE2.05/SIMPLE/TESTP
ROG ERROR/usercode.user.s 
LoadError: User Error while loading file 

The “|”s represent control characters such as line breaks and tabs.  The “^^^^^” represent an 
indication of the construct in which the error occurred. 
Each pass is capable of generating errors.  Sometimes an error in a previous pass might cause 
spurious errors in subsequent passes.  Equally well, an error in a previous pass might cause real 
errors in subsequent passes to not be detected. 
Another point worth noting is that an attempt is made to load a program, even if it contains errors.  
The user can then attempt to run this program.  You do need to look in the trace window to check 
whether there were any error messages. 
It is not difficult to assemble and disassemble instructions. 
Alpha opcodes and function codes for some common instructions 
We have to know the opcode and function codes of each instruction.  For example, the format, 
opcode and function code is indicated below for some of the common instructions. 

Name Format Opcode Function code 
addq Operate 0x10 0x20 
subq Operate 0x10 0x29 
mulq Operate 0x13 0x20 
sra Operate 0x12 0x3c 
lda Memory 0x8  
ldq Memory 0x29  
ldbu Memory 0xa  
stq Memory 0x2d  
beq Branch 0x39  
bne Branch 0x3d  

Alpha Registers 
0 v0  26 ra 
1-8 t0-t7  27 pv 
9-14 s0-s5  28 at 
15 fp  29 gp 
16-21 a0-a5  30 sp 
22-25 t8-t11  31 zero 

(Note:  The register numbers are in decimal). 
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§12.2  Integer operate instructions 
Integer operate instructions have the following format: 

31 026 25

Opcode

Integer operate instruction with second operand a register

regA regB regCFunction00

21 20 16 15 13 12 11 5 4

31 026 25

Opcode

Integer operate instruction with second operand a literal

regA regCFunction1

21 20 13 12 11 5 4

Unsigned literal

 
Suppose we have the instruction “addq $a0, $t0, $t2;”.  The identifiers a0, t0, t2 are symbolic names 
for registers 16, 1 and 3 (decimal), so we could write the instruction as “addq $16, $1, $3;”.  
Moreover, the literal flag must be 0, so the fields for the instruction are: 

Field opcode regA regB padding literal flag function regC 

Hex 0x10 0x10 0x1 0x0 0x0 0x20 0x3 

Binary 010000 10000 00001 000 0 0100000 00011 

Grouping the bits in lots of 4 we get 
0100 0010 0000 0001 0000 0100 0000 0011 
and writing it in hexadecimal, we can see that the instruction is encoded as the number 
0x42010403. 
Consider the instruction “subq $t5, 1;”.  Expanding this out to three operands, and replacing the 
symbolic name, we get “subq $6, 1, $6;”.  We have an integer operate format, with a literal for the 
second operand, so  the fields for the instruction are: 

Field opcode regA literal 
value 

literal flag function regC 

Hex 0x10 0x6 0x1 0x1 0x29 0x6 

Binary 010000 00110 00000001 1 0101001 00110 

Grouping the bits in lots of 4 we get 
0100 0000 1100 0000 0011 0101 0010 0110 
and writing it in hexadecimal, we can see that the instruction is encoded as the number 0x40c03526. 
The computer must perform the translation in reverse order.  Given the instruction in internal form, 
it must be able to determine the opcode and operands, so that it can execute the instruction.  For 
example, suppose we have an instruction 0x4cf5540e. 
Writing this in binary, we get 
0100 1100 1111 0101 0101 0100 0000 1110. 



Alpha Computer Architecture 30 January 2007 Page 12-114 

Assembling and Disassembling 

Now the 6 bit opcode is 010011, namely 0x13, which represents an integer operate instruction.  
Moreover bit 12 is 1, so the instruction has a literal for the second operand.  Splitting it up into its 
fields, we get 

Field opcode regA literal 
value 

literal flag function regC 

Binary 010011 00111 10101010 1 0100000 01110 

Hex 0x13 0x7 0xaa 0x1 0x20 0xe 

Decimal  7 170   14 

Now opcode 0x13, and function code 0x20 represents the mulq instruction.  So we must have the 
instruction “mulq $7, 170, $14;”, or using symbolic names for registers, “mulq $t6, 170, $s5;”. 

§12.3  Memory access instructions 
Memory access instructions have the following format 

31 026 25

Opcode

Memory access instruction

regA regB

21 20 16 15

Signed displacement

 
The displacement is a signed two’s complement number. 
Suppose we have the instruction “lda $sp, +10($sp);”. 
We get 

Field opcode regA regB displacement 

Hex 0x8 0x1e 0x1e 0xa 

Binary 001000 11110 11110 0000000000001010 

(Remember that decimal 10 is hexadecimal 0xa and binary 1010.) 
Grouping the bits in lots of 4 we get 
0010 0011 1101 1110 0000 0000 0000 1010 
and writing it in hexadecimal, we can see that the instruction is encoded as the number 0x23de000a. 
Suppose we have the instruction “lda $sp, -10($sp);”. 
We get 

Field opcode regA regB displacement 

Hex 0x8 0x1e 0x1e 0xfff6 

Binary 001000 11110 11110 1111111111110110 

(We can represent decimal -10 as a two’s complement number by writing decimal 10 in binary as 
0000000000001010, taking the one’s complement 1111111111110101, then adding 1 to get 
1111111111110110.  We have to take into account the number of bits used to store the value.) 
Grouping the bits in lots of 4 we get 
0010 0011 1101 1110 1111 1111 1111 0110 
and writing it in hexadecimal, we can see that the instruction is encoded as the number 0x23defff6. 
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Suppose we have the instruction 0x23deffe0.  In binary this is: 
0010 0011 1101 1110 1111 1111 1110 0000 
The opcode is 0x8, so we again have a lda instruction.  Splitting it up into fields, we get 

Field opcode regA regB displacement 

Hex 0x8 0x1e 0x1e 0xffe0 

Binary 001000 11110 11110 1111111111100000 

In other words, “lda $sp, -0x20($sp);”.  (We can determine the negative number the displacement 
corresponds to by taking the two’s complement, to get a positive number.  Alternatively, we can 
subtract 0xffe0 from 0x10000.) 

§12.4  Branch instructions 
Branch instructions are a little more complex, because the displacement stored in the instruction is 
relative to the program counter, at the time at which the instruction is executed (after the program 
counter has been incremented to point to just after the instruction), and the displacement is counted 
in longwords (in other words, the low two bits of the byte displacement are discarded), because all 
instructions must be longword aligned. 

31 026 25

Opcode

Branch instruction

regA

21 20

Signed displacement / 4

 
Suppose we have an instruction “bne $s1, label1;”, at address 0x80023c, and label1 correponds to 
address 0x80027c. 
The program counter will be 0x800240 at the time the instruction is executed.  So the address to 
branch to is 0x80027c - 0x800240 = +0x3c bytes away.  Dividing this by 4 (the size of a longword) 
gives us a displacement of +0xf.  The opcode for bne is 0x3d, and register s1 is register 10 
(decimal), so we get: 

Field opcode regA displacement 

Hex 0x3d 0xa 0xf 

Binary 111101 01010 000000000000000001111 

Grouping the bits in lots of 4 we get 
1111 0101 0100 0000 0000 0000 0000 1111 
and writing it in hexadecimal, we can see that the instruction is encoded as the number 0xf540000f. 
Suppose we have an instruction “beq $v0, label2;” at address 0x80025c, and label2 correponds to 
address 0x80022c. 
The program counter will be 0x800260 at the time the instruction is executed.  So the address to 
branch to is 0x80022c - 0x800260 = -0x34 bytes away (0x7fffcc, when written as a 23 bit unsigned 
number).  Dividing this by 4 (the size of a longword) gives us a displacement of -0xd (0x1ffff3, 
when written as a 21 bit unsigned number).  The opcode for beq is 0x39, and register v0 is register 
0, so we get: 

Field opcode regA displacement 

Hex 0x39 0x0 -0xd (0x1ffff3) 
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Binary 111001 00000 111111111111111110011 

(There are various ways of performing the arithmetic.  One way is to do everything in binary.  
Another way is to do it in hexadecimal.  Negative numbers come out as numbers with an infinite 
number of ..fffff on the left.  When we pack the data in the displacement field, we discard the extra 
bits.) 
Grouping the bits in lots of 4 we get 
1110 0100 0001 1111 1111 1111 1111 0011 
and writing it in hexadecimal, we can see that the instruction is encoded as the number 0xe41ffff3. 
Suppose we have the instruction 0xe6000003, at address 0x800200.  In binary this is 
1110 0110 0000 0000 0000 0000 0000 0011. 
The opcode is 0x39, so it is a beq instruction. 
Splitting it up into fields, we get: 

Field opcode regA displacement 

Hex 0x39 0x10 0x3 

Binary 111001 10000 000000000000000000011 

So the destination adress is 4 * 0x3 + 0x800204 = 0x800210, giving the instruction “beq $a0, 
0x800210;”.  Of course, if the address 0x800210 has a label, we can replace it by the symbolic 
label. 
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Exercise ASSEMBLE 
Assemble the following program.  Assume the code is at address 0x800000, and the data is at 
address 0x1000000. 
entry main.enter; 
 
 
block main { 
 data { 
  aaa: 
   quad 123; 
  bbb: 
   asciiz "\"hi\"\n"; 
  } data 
 code { 
 public enter: 
   beq  $t0, yyy; 
  xxx: 
   ldq  $s0, ($t0); 
   subq  $s0, 1; 
   bne  $s0, xxx; 
  yyy: 
   addq $zero, 123, $t0; 
   br  xxx; 
  } code 
 } block main 

Instruction Format Opcode Function code 
beq Branch 0x39  
bne Branch 0x3d  
br Branch 0x30  
ldq Memory 0x29  
addq Operate 0x10 0x20 
subq Operate 0x10 0x29 
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13. Commonly used Alpha instructions 
Integer operate instructions 
Opcode $regA, $regB, $regC 

intReg[ regC ] = intReg[ regA ] op intReg[ regB ] 
 
Opcode $regA, constantB, $regC 

The constant is an 8 bit unsigned constant. 
intReg[ regC ] = intReg[ regA ] op constantB 
Arithmetic integer operate instructions 
addq add + 
subq subtract - 
mulq multiply * 
umulh top half of 128 bit multiply * 
divq/divqu divide, signed/unsigned / 
modq/modqu modulo, signed/unsigned % 
s8addq scaled 8 add 8*operandA+operandB 
S4addq scaled 4 add 4*operandA+operandB 

Shift integer operate instructions 
sll shift left logical << 
srl shift right logical >>> 
sra shift right arithmetic >> 

Compare integer operate instructions 
cmpeq compare equal == 
cmplt/cmpult compare less than 

signed/unsigned 
< 

cmple/cmpule compare less than or equal 
signed/unsigned 

<= 

Logical integer operate instructions 
and and & 
bic bit clear & ~ 
bis/or bit set/or | 
eqv/xornot equivalent/exclusive or not ^ ~ 
ornot or not | ~ 
xor exclusive or ^ 

Conditional move instructions 
Opcode $regA, $regB, $regC 

if ( relation holds for intReg[ regA ] ) 
 intReg[ regC ] = intReg[ regB ] 
 
Opcode $regA, constantB, $regC 

if ( relation holds for intReg[ regA ] ) 
 intReg[ regC ] = constantB 
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cmoveq conditional move equal 
cmovne conditional move not equal 
cmovlt conditional move less than 
cmovle conditional move less than or equal 
cmovgt conditional move greater than 
cmovge conditional move greater than or equal 
cmovlbs conditional move low bit set 
cmovlbc conditional move low bit clear 

Memory instructions 
Opcode $regA, displacement($regB) 
Opcode $regA, ($regB) 
Opcode $regA, constant 

The displacement or constant is a 16 bit signed constant. 
Load address instruction 
intReg[ regA ] = displacement + intReg[ regB ] 
lda load address 

Load memory instructions 
intReg[ regA ] = Memory[ displacement + intReg[ regB ] ] 
ldq load quadword 
ldl load longword 
ldwu load word unsigned 
ldbu load byte unsigned 

Store memory instructions 
Memory[ displacement + intReg[ regB ] ] = intReg[ regA ] 
stq store quadword 
stl store longword 
stw store word 
stb store byte 

Branch instructions 
Conditional branch instructions 
Opcode $regA, destination 

if ( relation holds for intReg[ regA ] ) 
 programCounter = destination 
beq branch equal 
bne branch not equal 
blt branch less than 
ble branch less than or equal 
bgt branch greater than 
bge branch greater than or equal 
blbs branch low bit set 
blbc branch low bit clear 
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Unconditional branch instructions 
Opcode destination; 

programCounter = destination  // br 
intReg[ ra ] = programCounter  // bsr 
programCounter = destination 
br branch  
bsr branch to subroutime 

Jump instruction 
Opcode ($regA); 

programCounter = intReg[ regA ]  // jmp 
intReg[ ra ] = programCounter  // jsr 
programCounter = intReg[ regA ] 
jmp jump 
jsr jump to subroutine 

Return instruction 
programCounter = intReg[ ra ] 
ret return 

Callpal instruction 
call_pal constant; 

The constant is a 26 bit constant. 
call_pal call PALcode 

Pseudoinstructions 
Load immediate 
ldiq $regA, constant 

The constant is a 64 bit constant. 
intReg[ regA ] = constant 
ldiq load immediate quadword 

Clear  
clr $regA 

intReg[ regA ] = 0 
clr clear 

Unary pseudoinstructions 
Opcode $regB, $regC 

intReg[ regC ] = op intReg[ regB ] 
 
Opcode constantB, $regC 

The constant is an 8 bit unsigned constant. 
intReg[ regC ] = op constantB 
mov move 
negq negate 
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14. System calls and library functions in the simulator 
User Call PAL instructions in the simulator 
• call_pal CALL_PAL_CALLSYS.  System call instruction.  Enter a system call. 
• call_pal CALL_PAL_BPT.  Breakpoint instruction.  Stop, so that the program can be 

resumed. 
To implement a system call, pass the system call number in $a0, and the arguments in $a1, $a2, 
$a3, ..., and return the result in $v0. 
Library functions in block Sys 
• int getChar().  Reads a character from the simple terminal. 
• int putChar( char c ).  Writes a character to the simple terminal. 
• void exit( int status ).  Causes the process to exit.  You need this at the end of your main 

program. 
• void breakpoint().  Causes the process to stop, so that it can be resumed. 
Library functions in block IO 
• void newline().  Prints a newline. 
• void print( char *s ).  Prints a string. 
• void error( char *s ).  Prints a string then exits. 
• char * readLine( char *s, int max ).  Reads a line of input into a buffer, and terminates the text 

with a null byte.  Discards text that will not fit into the buffer.  Return the address of the null 
byte just beyond the end of the text.  Returns null on end of file. 

• void printf( char *s, int param0, int param1, int param2, int param3, int param4 ).  Prints the 
parameters according to the format string s. Indicate format directive by %.  Specify 
alignment by - (left) or + (right).  Specify 0 pad character by 0 (omit for space).  specify field 
width in decimal.  %b, (binary) %o, (octal) %d (decimal), %x, (hexadecimal) %c (character), 
%s (string), %% (to escape %).  E.g., printf( “value = %+024x\n”, value ). 

Library functions in block Number 
• int fromString( char *buffer, int base ).  Converts the text in the buffer from the specified base 

into internal form.  If base is 0, determines the base from the start of the text. 
• char *toUnsigned( unsigned int value, int base ).  Converts the unsigned number into a base. 
• char *toSigned( int value, int base ).  Converts the signed number into a base. 
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Library functions in block String 
• char *fromChar( char c ).  Creates a string containing the character c. 
• int compare( char *s, char *t ).  Compares two strings and indicates their order by a value <, 

==, > 0 depending on whether s < t, s == t, s > t. 
• int length( char *s ).  Returns the length of the string s. 
• void copy( char *s, char *t ).  Copies the string pointed to by t into the buffer pointed to by s.  

Does not cope with overlapping strings. 
• char *padLeft( char *s, char padChar, int fieldWidth ).  Pads s on the left with the pad 

character, to create a string of length fieldWidth.  Trims s on the right if more than fieldWidth 
characters long. 

• char *padRight( char *s, char padChar, int fieldWidth ).  Pads s on the right with the pad 
character, to create a string of length fieldWidth.  Trims s on the left if more than fieldWidth 
characters long. 

Functions that return a string (char *) use static space.  The space will be overwritten by a later 
invocation. 
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15. Function invocation conventions 
The arguments are passed in $a0, $a1, $a2, ..., and the result is returned in $v0. 
Space can be allocated on the stack by subtracting the amount of space needed from the stack 
pointer on entry to the function.  This space should be deallocated by adding the amount of space 
needed to the stack pointer on exit from the function.  The values of registers can then be saved on 
the stack on function entry and restored on function exit.  The invoked function may make use of 
the registers, during the invocation, but this use will not be visible to the invoker. 
Functions that alter the stack pointer register $sp must restore it on return.  In other words, the 
amount subtracted from the stack pointer on function entry and the amount added to the stack 
pointer on function exit must agree. 
Functions must save and restore any “saved” registers $s0, $s1, $s2, ..., that they make use of.  
Hence a function invocation will not appear to alter any of the saved registers. 
The bsr instruction saves the program counter in the return address register $ra.  Hence the return 
address register will be altered by a function invocation.  If a function invokes another function, the 
invoker must save and restore the $ra register. 
Functions can modify the “temporary” registers $t0, $t1, $t2, ..., wiithout saving and restoring them.  
Similarly functions can modify the argument registers, and $v0.  Hence the invoker cannot assume 
data in these registers will remain on return from the function. 
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16. Handling of Exceptions and Interrupts in the Simulator 
When an exception or interrupt occurs, PAL mode is entered at an address specified by the PAL 
exception/interrupt vector table. 
The cause of the exception or interrupt can be 
• RESET Machine reset.  This effectively occurs when the machine is turned on.  

The machine starts executing the RESET handler. 
• MCHK Machine check.  This should represent a hardware failure, and should 

never happen. 
• ARITH An arithmetic exception (integer overflow, floating point overflow, 

floating point underflow, inexact floating point result, divide by zero, 
invalid operand). 

• INTERRUPT Any interrupt (clock, disk, keyboard, screen, or software interrupt). 
• D_FAULT A data access fault (fault on read/write, access control (protection) 

violation (e.g., trying to write to read-only memory), non-existent 
physical memory for a load or store).  For naive users of the simulator 
this usually means the virtual address being accessed by a load or store 
instruction has the wrong protection or does not exist. 

• ITB_MISS An instruction translation buffer miss (page table entry not in the 
instruction translation buffer).  For naive users of the simulator this 
usually means the virtual address being accessed by the program counter 
does not exist or does not correspond to code. 

• ITB_ACV An instruction fetch fault (access control (protection) violation (e.g., 
trying to execute non-executable memory), non-existent physical 
memory for an instruction fetch). 

• DTB_MISS_NATIVE A data translation buffer miss (page table entry not in the data translation 
buffer), when not in PAL mode.  For naive users of the simulator this 
usually means the virtual page being accessed by a load or store 
instruction does not exist. 

• DTB_MISS_PAL A data translation buffer miss (page table entry not in the data translation 
buffer), when in PAL mode.  This is generated if the page table entry for 
the kernel stack is not in the data translation buffer when attempting to 
modify the kernel stack on entry to or exit from an exception. 

• UNALIGN Unaligned access fault (a load or store instruction is trying to access 
memory at an address not divisible by the size of the date being loaded or 
stored). 

• OPCDEC An attempt to execute an unimplemented or illegal instruction.  For naive 
users of the simulator this usually means an attempt to execute data as 
code.  For example, they might have flowed into the constant section or 
global table, because they missed out an instruction to invoke Sys.exit. 

• FEN An attempt to execute a floating point instruction when the floating point 
instruction flag is not enabled. 
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• CALL_PAL_KERNEL Execution of a call_pal instruction from kernel mode.  This is often 
caused by the execution of the retsys instruction, and does not represent 
an error. 

• CALL_PAL_USER Execution of a call_pal instruction from user mode, including system 
calls.  This is often caused by the execution of the callsys instruction, and 
does not represent an error. 
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17. The Alpha Assembler Lexical and Syntactic Structure 
§17.1  Lexical Structure 
Layout 
In this assembler, programs are essentially free format, in the sense that blanks, tabs, carriage 
returns, and line feeds are largely irrelevant.  Unlike most assemblers, statements can be split over 
multiple lines.  It does not matter whether line breaks are represented by CR, LF, or CR/LF pairs, so 
it does not matter what kind of machine you are using.  “;”s take the place of line breaks, in that 
they are used to terminate simple statements. 
Comments 
There are two kinds of comments.  Single line comments are of the form 
 // Text until end of line 

Multi-line comments are of the form  
/*  
Possibly multi line text 
*/  

/* */ style comments can be nested. 
Literals 
The assembler allows decimal, octal, and hexadecimal integer literals, floating point literals, string 
and character literals.  All have much the same format as in C and Java. 
Zero is represented by 0. 
Octal integers are of the form 0[0-7]*. 
Decimal integers are of the form [1-9][0-9]*. 
Hexadecimal integers are of the form 0[xX][0-9A-Fa-f]+. 
Thus unless an integer starts with a 0 or 0x, it is interpreted as decimal. 
Floating point numbers are of the form {head}{tail} | {head}{exp} | {head}{tail}{exp}, 
where head represents [0-9]+, tail represents [.]{digit}+, sign represents [\+\-]?, and exp 
represents [eE]{sign}[0-9]+. 
Character literals are of the form \'{chr}\', and string literals are of the form \"{chr}*\", where 
chr represents [^\"\r\n\\]|\\{escape}, escape represents {octalesc} | {hexesc} | 

{charesc}, octalesc represents [0-7] | [0-7][0-7] | [0-3][0-7][0-7], hexesc represents 
[xX]{hexdigit} | [xX]{hexdigit}{hexdigit}, charesc represents [ntbrf\\\"\'] (linefeed, 
tab, backspace, carriage return, form feed, backslash, double quote). 
Identifiers 
Identifiers are of the form [A-Za-z_][A-Za-z0-9_]*, in other words a letter, followed by zero or 
more letters or digits.  An underscore is considered to be a letter. 
Keywords 
The assembler has the following keywords: 
entry, extends, uses, abs, code, const, data, local, block, public, private, protected, 
align, ascii, asciiz, byte, ubyte, word, uword, long, ulong, quad, uquad, float, double, 
space, enclosing. 
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Special symbols 
The assembler has the following special symbols: 
“;”, “:”, “,”, “$”, “(”, “)”, “[”, “]”, “{”, “}”, “+”, “-”, “*”, “/”, “%”, “<<”, “>>”, “>>>”, “^”, “|”, 
“&”, “~”, “=”, “.”. 

§17.2  Syntactic Structure 
Program 
 
Program ::= 
  EntryOpt 
  InitStmtSeq 
 ; 
 
EntryOpt ::= 
  /* Empty */ 
 | 
  “entry” Expr “;” 
 ; 

Sections 
SectionSeq ::= 
  /* Empty */ 
 | 
  SectionSeq Section 
 ; 
 
Section ::= 
  “code” 
  “{” 
  LabelledInitStmtSeq 
  “}” 
  “code” 
 | 
  “const” 
  “{” 
  LabelledInitStmtSeq 
  “}” 
  “const” 
 | 
  “data” 
  “{” 
  LabelledInitStmtSeq 
  “}” 
  “data” 
 | 
  “local” 
  “{” 
  LabelledUninitStmtSeq 
  “}” 
  “local” 
 | 
  “abs” 
  “{” 
  AbsStmtSeq 
  “}” 
  “abs” 
 | 
  “block” IDENT ExtendsOpt UsesOpt 
  “{” 
  SectionSeq 
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  “}” 
  “block” IDENT 
 | 
  Access “block” IDENT ExtendsOpt UsesOpt 
  “{” 
  SectionSeq 
  “}” 
  “block” IDENT 
 | 
  “import” STRINGCONST “;” 
 ; 
 
ExtendsOpt ::= 
  /* Empty */ 
 | 
  “extends” Expr 
 ; 
 
UsesOpt ::= 
  /* Empty */ 
 | 
  “uses” NameSeq 
 ; 

Statement Sequences 
LabelledInitStmtSeq ::= 
  InitStmtSeq 
 | 
  InitStmtSeq 
  EndLabelStmt 
 ; 
 
LabelledUninitStmtSeq ::= 
  UninitStmtSeq 
 | 
  UninitStmtSeq 
  EndLabelStmt 
 ; 
 
InitStmtSeq ::= 
  /* Empty */ 
 | 
  InitStmtSeq InitStmt 
 ; 
 
UninitStmtSeq ::= 
  /* Empty */ 
 | 
  UninitStmtSeq UninitStmt 
 ; 
AbsStmtSeq ::= 
  /* Empty */ 
 | 
  AbsStmtSeq AbsStmt 
 ; 

End Label Statements 
EndLabelStmt ::= 
  IDENT “:” 
 | 
  Access IDENT “:” 
 | 
  IDENT “:” EndLabelStmt 
 | 
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  Access IDENT “:” EndLabelStmt 
 ; 

Initialised Statements 
InitStmt ::= 
  IDENT OperandSeqOpt “;” 
 | 
  Type Expr “;” 
 | 
  Type SizeSeq Expr “;” 
 | 
  IDENT “:” InitStmt 
 | 
  Access IDENT “:” InitStmt 
 | 
  “align” “;” 
 | 
  “align” Type “;” 
 | 
  Type “;” 
 | 
  Type SizeSeq “;” 
 | 
  “space” Expr “;” 
 | 
  “space” Expr SizeSeq “;” 
 | 
  Access IDENT 
  “{” 
  LabelledInitStmtSeq 
  “}” 
  IDENT 
 | 
  IDENT 
  “{” 
  LabelledInitStmtSeq 
  “}” 
  IDENT 
 | 
  “{” 
  LabelledInitStmtSeq 
  “}” 
 | 
  “;” 
 | 
  Section 
 ; 
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Uninitialised Statements 
UninitStmt ::= 
  IDENT “:” UninitStmt 
 | 
  Access IDENT “:” UninitStmt 
 | 
  “align” “;” 
 | 
  “align” Type “;” 
 | 
  Type “;” 
 | 
  Type SizeSeq “;” 
 | 
  “space” Expr “;” 
 | 
  “space” Expr SizeSeq “;” 
 | 
  Access IDENT 
  “{” 
  LabelledUninitStmtSeq 
  “}” 
  IDENT 
 | 
  IDENT 
  “{” 
  LabelledUninitStmtSeq 
  “}” 
  IDENT 
 | 
  “{” 
  LabelledUninitStmtSeq 
  “}” 
 | 
  “;” 
 | 
  Section 
 ; 

Absolute Statements 
AbsStmt ::= 
  IDENT “=” Expr “;” 
 | 
  Access IDENT “=” Expr “;” 
 | 
  “;” 
 | 
  Section 
 ; 

Access Modifiers 
Access ::= 
  “public” 
 | 
  “private” 
 | 
  “protected” 
 ; 
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Types 
Type ::= 
  “ascii” 
 | 
  “asciiz” 
 | 
  “byte” 
 | 
  “ubyte” 
 | 
  “word” 
 | 
  “uword” 
 | 
  “long” 
 | 
  “ulong” 
 | 
  “quad” 
 | 
  “uquad” 
 | 
  “float” 
 | 
  “double” 
 ; 

Array Size Sequence 
SizeSeq::= 
  /* Empty */ 
 | 
  SizeSeq “[” Expr “]” 
 ; 

Operands 
OperandSeqOpt ::= 
  /* Empty */ 
 | 
  OperandSeq 
 ; 
 
OperandSeq ::= 
  Operand 
 | 
  OperandSeq “,” Operand 
 ; 
 
Operand ::= 
  “$” Expr 
 | 
  Expr 
 | 
  “(” “$” Expr “)” 
 | 
  Expr “(” “$” Expr “)” 
 ; 
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Expressions 
Expr ::= 
  Expr “+” Term 
 | 
  Expr “-” Term 
 | 
  Term 
 ; 
 
Term ::= 
  Term “*” Factor 
 | 
  Term “/” Factor 
 | 
  Term “%” Factor 
 | 
  Term “<<” Factor 
 | 
  Term “>>” Factor 
 | 
  Term “>>>” Factor 
 | 
  Term “^” Factor 
 | 
  Term “|” Factor 
 | 
  Term “&” Factor 
 | 
  Factor 
 ; 
 
Factor ::= 
  “+” Factor 
 | 
  “-” Factor 
 | 
  “~” Factor 
 | 
  “(” Expr “)” 
 | 
  “(” Type “)” Factor 
 | 
  OCTINTCONST 
 | 
  DECINTCONST 
 | 
  HEXINTCONST 
 | 
  CHARCONST 
 | 
  FLOATCONST 
 | 
  STRINGCONST 
 | 
  Name 
 ; 

Names 
NameSeq ::= 
  Name 
 | 
  NameSeq “,” Name 
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 ; 
 
Name ::= 
  “enclosing” 
 | 
  IDENT 
 | 
  Name “.” IDENT 
 ; 

§17.3  Programs, sections and blocks 
An assembly language program starts with an optional entry point specification (default, start of the 
code section), followed by a sequence of statements, which are usually sections, import directives 
and blocks. 
 
entry main.enter; 
 
import "../IMPORT/callsys.h"; 
 
// void main() { 
//  while ( TRUE ) { 
//   char c; 
//   c = getChar(); 
//   putchar( c ); 
//   } 
//  } 
block main uses CALLSYS { 
 code { 
 public enter: 
 loop: 
  ldiq $a0,  CALLSYS_GETCHAR; 
  call_pal  CALL_PAL_CALLSYS; 
  mov   $v0,  $a1; 
  ldiq $a0,  CALLSYS_PUTCHAR; 
  call_pal  CALL_PAL_CALLSYS; 
  br  loop; 
 end: 
  } code 
 } block main 

So in the above program, the entry point is the label enter, within the block main.  The code in the 
file “../IMPORT/callsys.h” is imported.  The syntax for an imported code file is the same as for 
the main program, except that an entry point should not be specified.  Files must not be imported 
more than once.  File path names should be given in UNIX format. 
An absolute section contains declarations of symbolic names for constants.  Using symbolic names 
provides a way of making our programs easy to read.  For example, we can declare symbolic names 
for registers. 
A code section is normally composed of instructions to execute.  The block corresponding to a 
function will contain a code section. 
A const section is composed of the data for string constants, etc., that will not be altered. 
A data section is composed of the data for global variables, that might be altered. 
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// char buffer[ BUFFERSIZE + 1 ]; 
// void main() { 
//  while ( TRUE ) { 
//   print( "Type some input: " ); 
//   readline( buffer, BUFFERSIZE ); 
//   print( "The input was: " ); 
//   print( buffer ); 
//   newline(); 
//   } 
//  } 
block main uses proc { 
 abs { 
  NEWLINE  = '\n'; 
  BUFFERSIZE = 200; 
  } abs 
 const { 
 message1: 
  asciiz "Type some input: "; 
 message2: 
  asciiz "The input was: "; 
  } const 
 data { 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
  } data 
 code { 
 public enter: 
  { 
  loop: 
   ldiq $a0, message1; 
   bsr  IO.print.enter; 
   ldiq $a0, buffer; 
   ldiq $a1, BUFFERSIZE; 
   bsr  IO.readLine.enter; 
   ldiq $a0, message2; 
   bsr  IO.print.enter; 
   ldiq $a0, buffer; 
   bsr  IO.print.enter; 
   bsr  IO.newline.enter; 
   br  loop; 
  end: 
   } 
  } code 
 } block main 

A local section is used to define the offsets for fields of records, activation records of functions, etc.  
It does not allocate static space.  It is primarily used to generate the values of symbols representing 
the offsets of fields from the base of the record, and the offsets of saved registers and local variables 
from the base of the activation record. 
block proc { 
 local { 
  protected savRet: quad; 
  protected savFP: quad; 
  protected sav0: quad; 
  protected sav1: quad; 
  protected sav2: quad; 
  protected sav3: quad; 
  protected sav4: quad; 
  protected sav5: quad; 
  protected sav6: quad; 
  } local 
 } block proc 
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A block is a named compound object, composed of sections, sub-blocks, etc.  A block is often used 
to contain all the code for a function.  A class declaration might be represented by a block 
containing sub-blocks for functions declared within the class.  We can also use a block just to group 
related constants together. 
If a block specifies it extends a value, it means that the offsets for its local section start from that 
value.  It is often used to specify the structure of an activation record, that allocates additional space 
for local variables, or additional saved registers, beyond those normally saved. 
 // void print( char *s ) { 
 //  while ( *s != 0 ) { 
 //   putChar( *s ); 
 //   s++; 
 //   } 
 //  } 
 // 
 public block print uses proc { 
  abs { 
   s  = s0; 
   } abs 
  code { 
  public enter: 
   lda  $sp, -sav1($sp); 
   stq  $ra, savRet($sp); 
   stq  $s0, sav0($sp); 
  body: 
   mov  $a0, $s;    // Pointer to char in string 
   { 
   while: 
    ldbu  $a0, ($s);  // Get character 
    beq  $a0, end;   // Break if at end of string 
   do: 
    bsr  Sys.putChar.enter; // Print char 
    addq  $s, 1;   // Increment pointer 
    br  while; 
   end: 
   } 
  return: 
   ldq  $s0, sav0($sp); 
   ldq  $ra, savRet($sp); 
   lda  $sp, +sav1($sp); 
   ret; 
   } code 
  } block print 

Sections within a block may be interleaved.  We may specify an absolute section, a data section, a 
code section, then another absolute section, data section and code section.  The assembler reshuffles 
the sections, so that the memory image created contains the complete code section, complete 
constant section, complete global table section, then complete data section, in that order.  It is even 
possible to specify a constant section inside a code section.  This kind of thing is useful if you want 
the definition of a string constant to be close to its application. 
Similarly, blocks may be interleaved, and the assembler reshuffles the partial blocks, to put them 
together.  Sometimes this feature is useful when generating assembly language using a compiler. 

§17.4  Statements 
There are a number of different kinds of statement. 
• Instruction statements.  These are used to write the instructions that make up our assembly 

language program. 
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• Label declaration statements.  These are used to name memory or local offsets, so that we can 
refer to them.  A label declaration statement contains another statement as a substatement. 

• Identifier definition statements.  These are used to name constant values.  The constant values 
are computed at the time of assembly, not at run time. 

• Memory allocation statements.  These are used to allocate and possibly initialise memory for 
global and local variables. 

• Compound statements.  These are used to group statements together, and provide a local 
scope for labels.  They are particularly useful when building up control statements such as 
loops and if statements, in that each compound statement can have its own labels with 
standard names, such as while, do, end for while loops, if, then, else, end, for if 
statements. 

• Null statements.  These are used to allow a “;” to be placed after a label.  They are not really 
necessary. 

Most statements, apart from compound statements are terminated by a “;”. 
Instructions 
An instruction statement is composed of an identifier representing the opcode, followed by a 
comma separated sequence of operands, then a “;”.  For example: 
 bsr  getChar.enter;  // Get a char 
 cmpeq $v0, NEWLINE, $t0; // Break if newline 
 blbs  $t0, end; 

Instructions statements usually only occur within a code section. 
Operands can be of the form 
• $ Expr, to represent a register operand. 
• Expr, to represent a literal operand, or destination in a branch instruction. 
• ( $ Expr ) to represent a memory access, with zero displacement from a register. 
• Expr ( $ Expr ) to represent a memory access, with displacement from a register. 
For example in 
 cmpeq $v0, NEWLINE, $t0; 

$v0 and $t0 represent registers, and NEWLINE represents a literal. 
In 
 bsr  getChar.enter; 

getChar.enter represents the destination of a branch instruction. 
In 
 stb  $v0, ($t0); 

($t0) represents displacement addressing, with a zero displacement. 
In 
 lda  $sp, -sav3($sp); 
 stq  $ra, savRet($sp); 

-sav3($sp) and savRet($sp) represent displacement addressing. 
The assembler is more restrictive than most conventional assemblers.  It checks that operands are 
within range.  For example, the literal for an operate instruction must be in the range 0x0 ... 0xff 
(an 8 bit unsigned literal). 
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There are some instructions supported by the assembler and simulator that do not exist on the real 
machine: 
• The divl, divlu, divq, divqu, modl, modlu, modq, and modqu instructions.  These 

instructions perform integer division and modulo arithmetic.  They have the operate 
instruction format. 

• The call_xfc (extended function call) instruction.  This instruction is used to implement 
special features of the simulator, such as simple input/output, window management, etc.  This 
instruction has the same format as a call_pal instruction. 

There are some instructions that are special, and can only be executed in PAL mode. 
• The hw_ld, and hw_st instructions.  These instructions can only be used in PAL mode, and 

are used to load from and store to physical addresses.  They have the memory instruction 
format. 

• The hw_mfpr, and hw_mtpr instructions.  These instructions can only be used in PAL mode, 
and are used to load from and store to special registers.  They have the memory instruction 
format. 

• The hw_rei instruction.  This instruction can only be used in PAL mode, and is used to 
return from PAL mode.  It has no operands. 

There is very little support for pseudoinstructions (things that look like real instructions, but are 
translated into one or more different instructions).  Maybe some additional pseudoinstructions will 
need to be added in later, but at the moment they are: 
• The ldiq (load immediate quadword) and ldit (load immediate tfloat) pseudoinstructions.  

These pseudoinstructions load a constant into a register.  The literal is actually stored in a 
table, called the global table, pointed to by a register called the gp (global pointer) register.  
The pseudoinstruction is actually replaced by a ldq or ldt instruction, that loads the literal 
value from this table, using an offset from the gp register.  The ldiq instruction is essentially 
the only way you can load the address of a variable into a register. 

• The mov (move), negq (negate quadword), and not pseudoinstructions (and similar 
instructions for moving or negating long or floating point values).  These pseudoinstructions 
move, negate, or complement the value of a register, or 8 bit unsigned literal, and store it in 
another register.  They are actually implemented by the addq, subq, and ornot instructions, 
with a zero first operand.  Mov and negq can be used to load 8 bit positive and negative 
integers into a register.  The lda instruction can be used to load 16 bit signed integers into a 
register.  Large values are best loaded by the ldiq instruction. 

• The clr (clear) pseudoinstruction, and a similar instruction for clearing a floating point 
register.  This pseudoinstruction clears (zeroes) a register.  It is actually implemented by a bis 
instruction, with the first two operands zero. 

There are some real instructions for which some operands may be omitted. 
• The operate instructions.  The destination register may be omitted, and defaults to the first 

source register.  Some operate instructions ignore some operands (for example, sign extension 
instructions).  These operands should be omitted in the assembly language. 

• The floating operate instructions.  The destination register may be omitted, and defaults to the 
first source register.  Some floating operate instructions ignore some operands (for example, 
conversion instructions).  These operands should be omitted in the assembly language. 
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• The jsr (jump subroutine) and jsr_coroutine (jump coroutine) instructions.  The saved pc 
register may be omitted, and defaults to the $ra register.  The register indicating the address 
to jump to may be omitted for the jsr_coroutine instruction, and defaults to the $ra register. 

• The ret (return) instruction.    Both registers may be omitted.  The  saved pc register defaults 
to $zero, and the register indicating the address to jump to default to $ra register. 

• The br and bsr instructions.  The destination register may be omitted, and defaults to $zero 
and $ra, respectively. 

The assembler does not support rounding or trapping flags, apart from integer overflow flags in 
integer instructions. 
Label declaration statements 
A label identifier can be declared by writing the identifier, then a colon, followed by a 
substatement. 
For example, in 
if: 
 cmplt $cnt, $size, $t0;  // If within buffer 
 blbc  $t0,  end; 
then: 
 addq  $ptr, $cnt, $t0;  // Store the character 
 stb  $v0,  ($t0); 
end: 

we declare three labels, if, then and end.  In fact the labels if and then are only there for cosmetic 
reasons, to give the appearance of an if statement.  They are never used. 
Note that labels represent addresses (for code, constant , and data sections) or offsets (for local 
sections). 
A label is aligned to the address of the start of the substatement.  Thus, if you write 
label: 
 quad 4; 

there is no need to precede the label by an alignment statement.  If any padding needs to be 
allocated to align the substatement, it will occur before the label.  This is a change from the way the 
assembler worked in the year 2001. 
In the unlikely event that you actually want the padding to occur after the label, and before the 
substatement, append a “;” after the “:”. 
label: 
 ; 
 quad 4; 

Identifier definition statements 
It is also possible to declare an identifier by an identifier definition statement. 
For example 
 ptr  = s0; 
 size  = s1; 
 cnt  = s2; 
 NEWLINE = '\n'; 

The expression on the right is evaluated by the assembler, and assigned to the identifier.  So for 
example, ptr above has the value 9, because s0 represents register 9 (specified in the block called 
register).  It is important to realise that this is not a run-time action.  It is not copying the contents of 
register $s0. 
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Identifier definition statements are used to give symbolic names to expressions, and make your code 
more readable. 
Scope of identifiers 
Identifiers can be declared as having public, protected, or private access.  The default access is 
private. 
An identifier declared within a section of a block can be referred to by its simple name anywhere 
within the block, including sub-blocks and compound statements. 
An identifier declared within a block or named compound statement as public can be accessed 
outside the block or compound statement, by prefacing it by the name of the block or compound 
statement.  Private and protected identifiers cannot be referred to in this manner. 
An identifier declared within another block as public or protected, can be referred to in a block that 
uses it, by its simple name.  Private identifiers cannot be referred to in this manner. 
Unlike Java, at the moment it is not possible to refer to an identifier, declared as protected in 
another block, that is used by this block, by a qualified name.  This may change, to become 
compatible with Java. 
Local declarations take precedence over declarations in enclosing blocks, enclosing compound 
statements, and used blocks.  However, if there is an ambiguity with regard to the meaning of an 
identifier, that is not declared locally, then an error is generated. 
Memory allocation statements 
We can initialise memory, by specifying a data type, followed by the initial value, then a “;”. 
 const { 
 message1: 
  asciiz "Type some input: "; 
 message2: 
  asciiz "The input was: "; 
  } const 

Data types can be keywords such as byte, ubyte, quad, ascii, asciiz, etc, to allocate space for a 
signed byte, unsigned byte, signed quadword, unterminated ASCII string, null terminated ASCII 
string, etc. 
Apart from the data types corresponding to strings, memory allocation instructions allocate the 
appropriate amount of memory in the relevant section (1 byte for byte and ubyte, 2 bytes for word 
and uword, 4 bytes for long and ulong, 8 bytes for quad and uquad, 4 bytes for float, 8 bytes for 
double).  The difference between the signed and unsigned variants is to do with checking the value 
is in range.  For example byte requires a value that is between -0x80 and +0x7f, while ubyte 
requires a value that is between 0 and +0xff.  In fact there is no checking for quad and uquad. 
For ascii the number of bytes allocated is equal to the length of the string, and the contents is the 
data within the string.  The asciiz directive is similar, except an extra zero byte is allocated and 
added on the end. 
Initialised memory statements usually only occur within a constant or data section. 
If we miss out the value, we get uninitialised (zero) data. 
We can allocate blocks of memory, by declaring an array: 
 data { 
 buffer: 
  byte [ BUFFERSIZE + 1 ]; 
  } data 

Uninitialised memory statements usually only occur within a data section, or local section. 
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It is also possible to allocate blocks of memory with a specified initial value for the elements. 
Space of an arbitrary size can be allocated by the space statement.  This statement can be used to 
allocate space for record variables. 
Alignment statements can be used to round the current address or offset up to a multiple of the size 
of a specified type.  This may be needed because data has to be aligned appropriately, for it to be 
accessed.  Generally, it is a good idea to align data labels to quadwords, no matter what the size of 
the data.  If labels are not at least aligned to longwords, then the memory display in the simulator 
will be confused. 
Compound statements 
It is possible to create compound statements, by enclosing them in { ... }.  The purpose of 
compound statements is to create a local scope for labels.  In particular, compound statements are 
used when implementing control statements such as loops and if statements.  We can use standard 
identifiers such as while, do, end, or if, then, else, end to label the code.  We can also make our 
code more readable by indenting the body of the compound statement. 
Compound statements can also be named, by writing IDENT { ... } IDENT.  This is useful if we 
wish to refer to public labels within the compound statement.  The identifiers of the opening and 
closing braces must match.   This fact is very useful in large program, for which it can be rather 
difficult checking that braces are matched. 
Null statements 
There is also a null statement, composed of nothing but a “;”, for people who like to put a “;” after 
a label at the end of a section. 

§17.5  Expressions 
It is possible to use expressions within statements.  These expressions involve literals, simple and 
qualified names, operators, and parentheses.  Two things must be borne in mind: names evaluate to 
addresses, not the contents of the address, and all expressions are evaluated at assembly time, and 
not run time. 
Literals include integer, floating point, character and string values.  String literals can only be used 
as the initial value in ascii and asciiz memory allocation statements. 
Simple identifiers can correspond to labels, in which case they represent an address or offset.  They 
can also correspond to identifiers declared in identifier definition statements, and the names of 
blocks or compound statements. 
We can refer to public identifiers within a block or compound statement from anywhere in which 
the block or compound statement can be accessed, by writing the block or compound statement 
name, a “.”, then the identifier. 
We can build up expressions using operators corresponding to binary “+”, “-”, “*”, “/”, “%”, “<<”, 
“>>”, “>>>”, “^”, “|”, “&”, unary “+”, “-”, “~”.  These are primarily used with arithmetic 
expressions, although binary “+” and “-” can involve addresses. 
It is also possible to use casts, to trim a value down to a more restrictive type.  For example, we can 
write ( byte ) ( ~ x ), to take the complement of x, and restrict it to 8 bits. 
Binary “+” and “-” have the lowest precedence, then all other binary operators, then unary 
operators.  Parentheses can be used to override precedences. 


