
20/08/14

1

CompSci.210

Review

Introduction to computing

Computer = electronic genius?
– NO! Electronic idiot!
– Does exactly what we tell it to, nothing more.

Goal of CompSci.210
You will be able to write programs in C
and understand what’s going on underneath – no
magic!

Approach
•  Build understanding from the bottom up
•  Bits ➨ Digital Logic ➨ Gates ➨ Processor ➨ Instructions ➨ C Programming

1-2

Two Recurring Themes

Abstraction
–  Productivity enhancer – don’t need to worry about details…

Can drive a car without knowing how
the internal combustion engine works.

–  …until something goes wrong!
Where’s the dipstick? What’s a spark plug?

–  Important to understand the components and how they work
together

Hardware vs. Software
–  It’s not either/or – both are components of a computer system
–  Even if you specialize in one, it is important to understand

capabilities and limitations of both

1-3

20/08/14

2

1-4

Big Idea #1: Universal Computing Device

All computers, given enough time and memory,
are capable of computing exactly the same things

= =
Smart	 phone	

Desktop	
Supercomputer	

1-5

The Turing Machine

Mathematical model of a device that can perform
any computation – Alan Turing (1936)

–  ability to read/write symbols on an infinite “tape”
–  state transitions, based on current state and symbol

Every computation can be performed by some
Turing machine. (Turing’s thesis)

Tadd	 a,b	 a+b	

Turing	 machine	 that	 adds	

Tmul	
a,b	 ab	

Turing	 machine	 that	 mul4plies	

For	 more	 info	 about	 Turing	 machines,	 see	
h9p://www.wikipedia.org/wiki/Turing_machine/	

For	 more	 about	 Alan	 Turing,	 see	
h9p://www.turing.org.uk/turing/

1-‐6	

Universal Turing Machine
A machine that can implement all Turing machines
-- this is also a Turing machine!

–  inputs: data, plus a description of computation (other
TMs)

U	
a,b,c	 c(a+b)	

Universal	 Turing	 Machine	

Tadd,	 Tmul	

U	 is	 programmable	 –	 so	 is	 a	 computer!	
•  instruc4ons	 are	 part	 of	 the	 input	 data	
•  a	 computer	 can	 emulate	 a	 Universal	 Turing	 Machine	
	

A	 computer	 is	 a	 universal	 compu4ng	 device	
Video	 h9p://vimeo.com/33559758	

20/08/14

3

1-7

From Theory to Practice

In theory, computer can compute anything
that’s possible to compute

–  (caveat) given enough memory and time

In practice, solving problems involves
computing under constraints.

–  time
•  weather forecast, next frame of animation, ...

–  cost
•  cell phone, automotive engine controller, ...

– power
•  cell phone, handheld video game, ...

1-8

From Theory to Practice

In theory, computer can compute anything
that’s possible to compute

–  (Caveat) given enough memory and time

In practice, solving problems involves
computing under constraints.

–  time
•  weather forecast, next frame of animation, ...

–  cost
•  cell phone, automotive engine controller, ...

– power
•  cell phone, handheld video game, ...

1-9

Problems	

Language	

Instruc4on	 Set	 Architecture	 	

Microarchitecture	

Circuits	

Devices	

Algorithms	

Big Idea #2: Transformations Between
Layers

20/08/14

4

1-10

How do we solve a problem using a computer?

A systematic sequence of transformations
between layers of abstraction

Problem	

Algorithm	

Program	

So0ware	 Design:	
choose	 algorithms	 and	 data	 structures	

Programming:	
use	 language	 to	 express	 design	

Instr	 Set	
Architecture	

Compiling/Interpre<ng:	
convert	 language	 to	 	
machine	 instruc4ons	

1-11

Deeper and Deeper…

Instr	 Set	
Architecture	

Microarch	

Circuits	

Processor	 Design:	
choose	 structures	 to	 implement	 ISA	

Logic/Circuit	 Design:	
gates	 	 and	 low-‐level	 circuits	 to	
implement	 components	

Devices	

Process	 Engineering	 &	 Fabrica<on:	
develop	 and	 manufacture	
lowest-‐level	 components	

1-12

Descriptions of Each Level

Problem Statement
–  stated using "natural language"
– may be ambiguous, imprecise

Algorithm
–  step-by-step procedure, guaranteed to finish
– definiteness, effective computability, finiteness

Program
–  express the algorithm using a computer language
– high-level language, low-level language

Instruction Set Architecture (ISA)
–  specifies the set of instructions the computer can perform
– data types, addressing mode

20/08/14

5

1-13

Descriptions of Each Level (cont.)

Microarchitecture
– detailed organization of a processor implementation
– different implementations of a single ISA

Logic Circuits
– combine basic operations to realize

microarchitecture
– many different ways to implement a single function

(e.g., addition)
Devices

– properties of materials, manufacturability

How do we represent data in a computer?

•  At the lowest level, a computer is an electronic
machine
–  works by controlling the flow of electrons

•  Easy to recognize two conditions:
1.  presence of a voltage – we’ll call this state “1”
2.  absence of a voltage – we’ll call this state “0”

•  Could base state on value of voltage,
but control and detection circuits much more
complex.
–  compare turning on a light switch to measuring or

regulating voltage

Unsigned Integers - binary

An n-bit unsigned integer represents any of 2n (integer)
values:
from 0 to 2n-1. 22	 21	 20	 Value	

0	 0	 0	 0	

0	 0	 1	 1	

0	 1	 0	 2	

0	 1	 1	 3	

1	 0	 0	 4	

1	 0	 1	 5	

1	 1	 0	 6	

1	 1	 1	 7	

How to convert decimal to binary video http://youtu.be/qWxiXU02ZQM

20/08/14

6

2-‐16	

Two’s Complement Binary
•  Problems with sign-magnitude and 1’s complement

–  two representations of zero (+0 and –0)
–  arithmetic circuits are complex

•  How to add two sign-magnitude numbers?
–  e.g., try 2 + (-3)

•  How to add two one’s complement numbers?
–  e.g., try 4 + (-3)

•  Two’s complement representation developed to make
circuits easy for arithmetic.
–  for each positive number (X), assign value to its negative (-X),

such that X + (-X) = 0 with “normal” addition, ignoring carry out

	 	 00101 	 (5) 	 	 01001 	 (9)	
	 + 	 11011 	 (-‐5) 	 + 	 	 (-‐9)	
	 	 00000 	 (0) 	 	 00000 	 (0)	

2-17

Sign Extension (sext)

•  Sometimes we want to convert a small number
of bits into a larger number of bits

•  If we just pad with zeroes on the left:

•  Instead,
propagate the MS bit (the sign bit):

4-‐bit 8-‐bit
0100 (4) 00000100 (s4ll	 4)
1100 (-‐4) 00001100 (12,	 not	 -‐4)

4-‐bit 8-‐bit
0100 (4) 00000100 (s4ll	 4)
1100 (-‐4) 11111100 (s4ll	 -‐4)

Overflow
•  If operands are too big, their sum cannot be

represented as an n-bit 2’s comp number
•  5 bits can represent 25 or 32 unsigned integers
•  Or 0 to 15 positive and -1 to -16 as signed integers

•  We have overflow in signed binary if:
–  signs of both operands are the same, and
–  sign of sum is different.

•  Another test -- easy for hardware:
–  carry into MS bit does not equal carry out

 01110 (14) 01110 (14)
 + 01000 (8) + 01000 (8)

 10110 (22) 10110 (-‐10)

unsigned signed

20/08/14

7

Addition/Subtraction with 2’s Complement

•  Two’s complement representation allows addition and
subtraction from a single simple adder.

•  Circuit to add S = A + B
•  To subtract S = A – B invert B and enable carry in

1-19

Logical Operations

•  Operations on logical TRUE or FALSE
–  two states -- takes one bit to represent:

TRUE=1, FALSE=0

•  View n-bit number as a collection of n logical values
– operation applied to each bit independently (bitwise)

A	 B	 A	 AND	 B	

0	 0	 0	
0	 1	 0	
1	 0	 0	
1	 1	 1	

A	 B	 A	 OR	 B	

0	 0	 0	
0	 1	 1	
1	 0	 1	
1	 1	 1	

A	 NOT	 A	

0	 1	
1	 0	

2-21

Examples of Logical Operations

•  AND
– useful for clearing bits

•  AND with zero = 0
•  AND with one = no change

•  OR
– useful for setting bits

•  OR with zero = no change
•  OR with one = 1

•  NOT
– unary operation

one argument flips every bit

 11000101
 AND 00001111

 00000101

 11000101
 OR 00001111!
! !11001111

 NOT 11000101
 00111010

20/08/14

8

2-22

Hexadecimal Notation
(not a representation)

•  It is often convenient to write binary (base-2) numbers
using hexadecimal (base-16) notation instead.
–  fewer digits -- four bits per hex digit
–  less error prone -- easy to corrupt long string of 1’s and 0’s

Binary	 Hex	 Decimal	

0000	 0	 0	
0001	 1	 1	
0010	 2	 2	
0011	 3	 3	
0100	 4	 4	
0101	 5	 5	
0110	 6	 6	
0111	 7	 7	

Binary	 Hex	 Decimal	

1000	 8	 8	
1001	 9	 9	
1010	 A	 10	
1011	 B	 11	
1100	 C	 12	
1101	 D	 13	
1110	 E	 14	
1111	 F	 15	

2-23

Converting from Binary Hexadecimal

•  Every four bits is a hex digit
–  start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111

7 D 4 F 8 A 3
This is not a new machine representation,!
just a convenient way to write the number."

This video shows you how to convert binary to hex
http://www.youtube.com/watch?v=W_NpD248CdE
(with binary to octal thrown in)

2-24

Fractions: Fixed-Point
•  How can we represent fractions?

–  Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

–  2’s comp addition and subtraction still work
•  only if binary points are aligned

 00101000.101 (40.625)
 + 11111110.110 (-‐1.25)

 00100111.011 (39.375)
No new operations -- same as integer arithmetic

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

Video: how to convert decimal fractions to binary http://youtu.be/Y4Q9PnjKhac

20/08/14

9

2-25

Very Large and Very Small: Floating-Point

•  Large values: 6.023 x 1023 -- requires 79 bits
•  Small values: 6.626 x 10-34 -- requires >110 bits
•  Use equivalent of “scientific notation”: F x 2E

•  Need to represent F (fraction), E (exponent), and sign.
•  IEEE 754 Floating-Point Standard (32-bits):

•  Exponent uses “biased” representation (no sign bit)
•  Fraction has implicit 1

S Exponent Fraction

1b 8b 23b

Video converting decimal to floating-point binary representation
http://youtu.be/iQFG7sAa7i4

2-26

Floating-Point Arithmetic
•  Floating point operations may overflow but, more

importantly, floating point operations are inherently
inexact

! Some numbers (e.g. “repeating decimal”) cannot be
represented exactly.

! Introduces the “Rounding” problem
•  Every inexact result creates a difference between

the mathematical value and the computed value.
•  Errors accumulate, often benignly by cancelling

out.
•  Worst-case accumulation of error can be

enormous.

Logic Gates
Use switch behavior of transistors
to implement logical functions: AND, OR, NOT

Digital symbols:
–  recall that we assign a range of analog voltages to

each digital (logic) symbol

–  assignment of voltage ranges depends on
electrical properties of transistors being used

•  typical values for "1": +5V, +3.3V, +2.9V
•  from now on we'll use +2.9V

20/08/14

10

CS210 28

Inverter (NOT Gate)

In Out

0 V 2.9 V

2.9 V 0 V

In Out

0 1
1 0

Truth table

CS210 29

Basic Logic Gates

CS210 30

DeMorgan's Law

Converting AND to OR (with some help from NOT)
Consider the following gate:

A B

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

A ⋅BBA A ⋅B

Shows that you can write an
expression like "not (A or B)"
as "(not A) and (not B)".
Similarly, "not (A or B)" can be
written as "(not A) and (not B)"

Watch this video
http://youtu.be/tKnS3s8fOu4

Therefore, you can implement
any truth table using only
NAND (or NOR) gates

20/08/14

11

CS210 31

Decoder
• n inputs, 2n outputs

–  exactly one output is 1 (true) for each possible input pattern

2-bit
decoder

Can detect a pattern in a
string of input bits – can
have any number of
inputs

CS210 32

Multiplexer (MUX)

n-bit selector and 2n inputs, one output
–  output equals one of the inputs, depending on selector S1 & S2

4-to-1 MUX

CS210 33

Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

20/08/14

12

SR-Latch: Simple Storage Element
Flip-Flop

S is used to “set” the element – set output Q to one
R is used to “reset” or “clear” the element – set output Q to zero

 NAND SR-Latch

This gives us the ability to store a bit (either 0 or 1)

Watch the video http://youtu.be/ti5jD7Q7BSA

Gated D-Latch

CS210 35

Two inputs: D (data) and WE (write enable)
" when WE = 1, latch is set to value of D

• S = D, R = NOT(D)
" when WE = 0, latch holds previous value

• S = R = 0

WE

WE

D0 D1 D2 D3

Q0 Q1 Q2 Q3

A 4 bit register

20/08/14

13

CS210 37

Memory

address
decoder

address

write
enable

input bits

output bits

Finite State Machines

A description of a system with the following components:

1.  A finite number of states
2.  A finite number of external inputs
3.  A finite number of external outputs
4.  An explicit specification of all state transitions
5.  An explicit specification of what determines each

external output value

Often described by a state diagram.
–  Inputs trigger state transitions.
–  Outputs are associated with each state (or with each

transition).

CS210 39

Finite State Machines

The turnstile has 2 states
•  locked and unlocked
The turnstile has 2 inputs
•  putting in a coin (coin)
•  pushing the bar (push)

State diagram

20/08/14

14

CS210 40

Storage: Master-Slave Flip flop

During 1st phase (clock=1),
previously-computed state in A
becomes current state in Latch B
and is sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

A B
From combinatorial
logic circuit

To combinatorial
logic circuit

Master-slave edge triggered D flip-flop

CS210 41

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on

Switch off

Outputs

Transition on each clock cycle

DANGER
MOVE
RIGHT

1

2

3

4

5

CS210 42

Traffic Sign Truth Tables

Outputs
(depend only on state: S1S0)

S1 S0 Z Y X

0 0 0 0 0

0 1 1 0 0

1 0 1 1 0

1 1 1 1 1

Lights 1 and 2
Lights 3 and 4

Light 5

Next State: S1ʹ′S0ʹ′
(depend on state and input)

On S1 S0 S1ʹ′	
 S0ʹ′	

0 - - 0 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

Switch

Whenever On = 0 (false), next state is 00 (off)
S1 & S0 are irrelevant

20/08/14

15

CS210 43

Traffic Sign Logic

Master-slave
flipflop

Lights 1 and 2 On

Lights 3 and 4 On

Light 5 On

CS210 44

LC-3 Data Path

Combinational
Logic

State Machine

Storage

CS210 45

Von Neumann Model

MAR MDR

MEMORY

* Monitor
* Printer
* LED
* Disk

OUTPUT

* Keyboard
* Mouse
* Scanner
* Card reader
* Disk

INPUT

PROCESSING UNIT

TEMPALU

PC
IR

CONTROL UNIT

MDR

MAR

20/08/14

16

CS210 46

Instruction Processing

Decode instruction

Evaluate addresses

Fetch operands from memory

Execute operation

Store result

Fetch instruction from memory

CS210 47

Instruction
• The instruction is the fundamental unit of work.
• Specifies two things:

–  opcode: operation to be performed (e.g. ADD)
–  operands: data/locations to be used for operation

• An instruction is encoded as a sequence of bits (Just like
data!)

–  Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

–  Control unit interprets instruction:
generates sequence of control signals to carry out operation.

–  Operation is either executed completely, or not at all.

• A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).

CS210 48

Example: LC-3 ADD Instruction

• LC-3 has 16-bit instructions.
– Each instruction has a four-bit opcode, bits [15:12].

• LC-3 has eight registers (R0-R7) for temporary
storage

– Sources and destination of ADD are registers

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

20/08/14

17

CS210 49

Control Unit State Diagram
The control unit is a state machine. Here is part of a
simplified state diagram for the LC-3:

A more complete state diagram is in Appendix C
It will be more understandable after Chapter 5

CS210 50

BR (PC-Relative)

Compiler
•  Translate high-level languages into machine code.
•  The machine code version can be loaded into the machine

and run without any further help as it is complete in itself.
•  The high-level language version of the program is called the

source code and the resulting machine code program is called
the object code.

20/08/14

18

Assembler

Assembler

Linker

Loader

Runtime System

Editor Translate to machine code

Add library code

Place code in appropriate memory locations

Execute code

Create source code

/opt/lc3tools/lc3as
usage: ./lc3as <ASM filename>

LC-3 Assembly Language Syntax

•  Each line of code is
– An instruction
– An assembler directive (or pseudo-op)
– A comment

•  Whitespace is ignored
•  Instruction format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

C
•  Developed at AT&T Bell Labs1969-73
•  designed to provides constructs that

map efficiently to machine instructions
•  found lasting use in applications that

had formerly been coded in assembly
language

•  Influenced C++, C#, Java, JavaScript,
Limbo, LPC, Objective-C, Perl, PHP,
Python…

