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CompSci.210 
 

Review 
 

Introduction to computing 

Computer = electronic genius? 
– NO!  Electronic idiot! 
– Does exactly what we tell it to, nothing more. 

Goal of CompSci.210 
You will be able to write programs in C 
and understand what’s going on underneath – no 
magic! 

Approach 
•  Build understanding from the bottom up 
•  Bits ➨ Digital Logic ➨ Gates ➨ Processor ➨ Instructions ➨ C Programming 
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Two Recurring Themes 

Abstraction 
–  Productivity enhancer – don’t need to worry about details… 

Can drive a car without knowing how 
the internal combustion engine works. 

–  …until something goes wrong! 
Where’s the dipstick?  What’s a spark plug? 

–  Important to understand the components and how they work 
together 

Hardware vs. Software 
–  It’s not either/or – both are components of a computer system 
–  Even if you specialize in one, it is important to understand 

capabilities and limitations of both 

1-3 



20/08/14 

2 

1-4 

Big Idea #1: Universal Computing Device 

All computers, given enough time and memory, 
are capable of computing exactly the same things 

= = 
Smart	  phone	  

Desktop	  
Supercomputer	  
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The Turing Machine 

Mathematical model of a device that can perform 
any computation – Alan Turing (1936) 

–  ability to read/write symbols on an infinite “tape” 
–  state transitions, based on current state and symbol 

Every computation can be performed by some  
Turing machine.  (Turing’s thesis) 

Tadd	  a,b	   a+b	  

Turing	  machine	  that	  adds	  

Tmul	  
a,b	   ab	  

Turing	  machine	  that	  mul4plies	  

For	  more	  info	  about	  Turing	  machines,	  see	  
h9p://www.wikipedia.org/wiki/Turing_machine/	  

For	  more	  about	  Alan	  Turing,	  see	  
h9p://www.turing.org.uk/turing/ 
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Universal Turing Machine 
A machine that can implement all Turing machines 
-- this is also a Turing machine! 

–  inputs:  data, plus a description of computation (other 
TMs) 

U	  
a,b,c	   c(a+b)	  

Universal	  Turing	  Machine	  

Tadd,	  Tmul	  

U	  is	  programmable	  –	  so	  is	  a	  computer!	  
•  instruc4ons	  are	  part	  of	  the	  input	  data	  
•  a	  computer	  can	  emulate	  a	  Universal	  Turing	  Machine	  
	  

A	  computer	  is	  a	  universal	  compu4ng	  device	  
Video	  h9p://vimeo.com/33559758	  
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From Theory to Practice 

In theory, computer can compute anything  
that’s possible to compute 

–  (caveat) given enough memory and time 

In practice, solving problems involves  
computing under constraints. 

–  time 
•  weather forecast, next frame of animation, ... 

–  cost 
•   cell phone, automotive engine controller, ... 

– power 
•   cell phone, handheld video game, ... 
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Problems	  

Language	  

Instruc4on	  Set	  Architecture	  	  

Microarchitecture	  

Circuits	  

Devices	  

Algorithms	  

Big Idea #2: Transformations Between 
Layers 
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How do we solve a problem using a computer? 

A systematic sequence of transformations 
between layers of abstraction 

Problem	  

Algorithm	  

Program	  

So0ware	  Design:	  
choose	  algorithms	  and	  data	  structures	  

Programming:	  
use	  language	  to	  express	  design	  

Instr	  Set	  
Architecture	  

Compiling/Interpre<ng:	  
convert	  language	  to	  	  
machine	  instruc4ons	  
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Deeper and Deeper… 

Instr	  Set	  
Architecture	  

Microarch	  

Circuits	  

Processor	  Design:	  
choose	  structures	  to	  implement	  ISA	  

Logic/Circuit	  Design:	  
gates	  	  and	  low-‐level	  circuits	  to	  
implement	  components	  

Devices	  

Process	  Engineering	  &	  Fabrica<on:	  
develop	  and	  manufacture	  
lowest-‐level	  components	  
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Descriptions of Each Level 

Problem Statement 
–  stated using "natural language" 
– may be ambiguous, imprecise 

Algorithm 
–  step-by-step procedure, guaranteed to finish 
– definiteness, effective computability, finiteness 

Program 
–  express the algorithm using a computer language 
– high-level language, low-level language 

Instruction Set Architecture (ISA) 
–  specifies the set of instructions the computer can perform 
– data types, addressing mode 
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Descriptions of Each Level (cont.) 

Microarchitecture 
– detailed organization of a processor implementation 
– different implementations of a single ISA 

Logic Circuits 
– combine basic operations to realize 

microarchitecture 
– many different ways to implement a single function  

(e.g., addition) 
Devices 

– properties of materials, manufacturability 

How do we represent data in a computer? 

•  At the lowest level, a computer is an electronic 
machine 
–  works by controlling the flow of electrons 

•  Easy to recognize two conditions: 
1.  presence of a voltage – we’ll call this state “1” 
2.  absence of a voltage – we’ll call this state “0” 

•  Could base state on value of voltage,  
but control and detection circuits much more 
complex. 
–  compare turning on a light switch to measuring or 

regulating voltage 

Unsigned Integers - binary 

An n-bit unsigned integer represents any of 2n (integer) 
values: 
from 0 to 2n-1. 22	   21	   20	   Value	  

0	   0	   0	   0	  

0	   0	   1	   1	  

0	   1	   0	   2	  

0	   1	   1	   3	  

1	   0	   0	   4	  

1	   0	   1	   5	  

1	   1	   0	   6	  

1	   1	   1	   7	  

How to convert decimal to binary video http://youtu.be/qWxiXU02ZQM  
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Two’s Complement Binary 
•  Problems with sign-magnitude and 1’s complement 

–  two representations of zero (+0 and –0) 
–  arithmetic circuits are complex 

•  How to add two sign-magnitude numbers? 
–  e.g., try 2 + (-3) 

•  How to add two one’s complement numbers?  
–  e.g., try 4 + (-3) 

•  Two’s complement representation developed to make 
circuits easy for arithmetic. 
–  for each positive number (X), assign value to its negative (-X), 

such that X + (-X) = 0 with “normal” addition, ignoring carry out 

	   	  00101 	  (5) 	   	  01001 	  (9)	  
	  + 	  11011 	  (-‐5) 	  + 	   	  (-‐9)	  
	   	  00000 	  (0) 	   	  00000 	  (0)	  
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Sign Extension (sext) 

•  Sometimes we want to convert a small number 
of bits into a larger number of bits 

•  If we just pad with zeroes on the left: 

•  Instead, 
propagate the MS bit (the sign bit): 

4-‐bit   8-‐bit 
0100  (4)  00000100  (s4ll	  4) 
1100  (-‐4)  00001100  (12,	  not	  -‐4) 

4-‐bit   8-‐bit 
0100  (4)  00000100  (s4ll	  4) 
1100  (-‐4)  11111100  (s4ll	  -‐4) 

Overflow 
•  If operands are too big, their sum cannot be 

represented as an n-bit 2’s comp number 
•  5 bits can represent 25 or 32 unsigned integers  
•  Or 0 to 15 positive and -1 to -16 as signed integers 

•  We have overflow in signed binary if: 
–  signs of both operands are the same, and 
–  sign of sum is different. 

•  Another test -- easy for hardware: 
–  carry into MS bit does not equal carry out 

     01110  (14)      01110  (14) 
 +  01000  (8)  + 01000  (8) 

  10110  (22)   10110  (-‐10) 

unsigned signed 
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Addition/Subtraction with 2’s Complement 

•  Two’s complement representation allows addition and 
subtraction from a single simple adder. 

•  Circuit to add  S = A + B 
•  To subtract S = A – B  invert B and enable carry in 
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Logical Operations 

•  Operations on logical TRUE or FALSE 
–  two states -- takes one bit to represent: 

TRUE=1, FALSE=0 

•  View n-bit number as a collection of n logical values 
– operation applied to each bit independently (bitwise) 

A	   B	   A	  AND	  B	  

0	   0	   0	  
0	   1	   0	  
1	   0	   0	  
1	   1	   1	  

A	   B	   A	  OR	  B	  

0	   0	   0	  
0	   1	   1	  
1	   0	   1	  
1	   1	   1	  

A	   NOT	  A	  

0	   1	  
1	   0	  

2-21 

Examples of Logical Operations 

•  AND 
– useful for clearing bits 

•  AND with zero = 0 
•  AND with one = no change 

•  OR 
– useful for setting bits 

•  OR with zero = no change 
•  OR with one = 1 

•  NOT 
– unary operation 

one argument flips every bit 

  11000101 
 AND  00001111 

  00000101  

  11000101 
 OR  00001111!
! !11001111  

 NOT  11000101 
  00111010  
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Hexadecimal Notation 
(not a representation) 

•  It is often convenient to write binary (base-2) numbers 
using hexadecimal (base-16) notation instead. 
–  fewer digits -- four bits per hex digit 
–  less error prone -- easy  to corrupt long string of 1’s and 0’s 

Binary	   Hex	   Decimal	  

0000	   0	   0	  
0001	   1	   1	  
0010	   2	   2	  
0011	   3	   3	  
0100	   4	   4	  
0101	   5	   5	  
0110	   6	   6	  
0111	   7	   7	  

Binary	   Hex	   Decimal	  

1000	   8	   8	  
1001	   9	   9	  
1010	   A	   10	  
1011	   B	   11	  
1100	   C	   12	  
1101	   D	   13	  
1110	   E	   14	  
1111	   F	   15	  
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Converting from Binary Hexadecimal 

•  Every four bits is a hex digit 
–  start grouping from right-hand side 

011 1010 1000 1111 0100 1101 0111 

7 D 4 F 8 A 3 
This is not a new machine representation,!
just a convenient way to write the number."

This video shows you how to convert binary to hex 
http://www.youtube.com/watch?v=W_NpD248CdE 
(with binary to octal thrown in) 
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Fractions: Fixed-Point 
•  How can we represent fractions? 

–  Use a “binary point” to separate positive 
from negative powers of two -- just like “decimal point.” 

–  2’s comp addition and subtraction still work 
•  only if binary points are aligned 

  00101000.101 (40.625) 
 +  11111110.110 (-‐1.25) 

  00100111.011 (39.375) 
No new operations -- same as integer arithmetic 

2-1 = 0.5 

2-2 = 0.25 

2-3 = 0.125 

Video: how to convert decimal fractions to binary http://youtu.be/Y4Q9PnjKhac  
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Very Large and Very Small: Floating-Point 

•  Large values: 6.023 x 1023 -- requires 79 bits 
•  Small values: 6.626 x 10-34 -- requires >110 bits 
•  Use equivalent of “scientific notation”: F x 2E 

•  Need to represent F (fraction), E (exponent), and sign. 
•  IEEE 754 Floating-Point Standard (32-bits): 

•  Exponent uses “biased” representation (no sign bit) 
•  Fraction has implicit 1 

S Exponent Fraction 

1b 8b 23b 

Video converting decimal to floating-point binary representation 
http://youtu.be/iQFG7sAa7i4  
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Floating-Point Arithmetic 
•  Floating point operations may overflow but, more 

importantly, floating point operations are inherently 
inexact 

! Some numbers (e.g. “repeating decimal”) cannot be 
represented exactly. 

! Introduces the “Rounding” problem 
•  Every inexact result creates a difference between 

the mathematical value and the computed value. 
•  Errors accumulate, often benignly by cancelling 

out. 
•  Worst-case accumulation of error can be 

enormous. 

Logic Gates 
Use switch behavior of transistors 
to implement logical functions: AND, OR, NOT 

Digital symbols: 
–  recall that we assign a range of analog voltages to 

each digital (logic) symbol 

–  assignment of voltage ranges depends on  
electrical properties of transistors being used 

•  typical values for "1": +5V, +3.3V, +2.9V 
•  from now on we'll use +2.9V 
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Inverter (NOT Gate) 

In Out 

0 V 2.9 V 

2.9 V 0 V 

In Out 

0 1 
1 0 

Truth table 

CS210 29 

Basic Logic Gates 

CS210 30 

DeMorgan's Law 

Converting AND to OR (with some help from NOT) 
Consider the following gate: 

A B 

0 0 1 1 1 0 

0 1 1 0 0 1 

1 0 0 1 0 1 

1 1 0 0 0 1 

A ⋅BBA A ⋅B

Shows that you can write an 
expression like "not (A or B)" 
as "(not A) and (not B)". 
Similarly, "not (A or B)" can be 
written as "(not A) and (not B)"  
 
Watch this video 
http://youtu.be/tKnS3s8fOu4  
 
Therefore, you can implement 
any truth table using only 
NAND (or NOR) gates 
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Decoder 
• n inputs, 2n outputs 

–  exactly one output is 1 (true)  for each possible input pattern 

2-bit 
decoder 

Can detect a pattern in a 
string of input bits – can 
have any number of 
inputs 

CS210 32 

Multiplexer (MUX) 

n-bit selector and 2n inputs, one output 
–  output equals one of the inputs, depending on selector S1 & S2 

4-to-1 MUX 

CS210 33 

Full Adder 

Add two bits and carry-in, 
produce one-bit sum and carry-out 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 
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SR-Latch: Simple Storage Element 
Flip-Flop 

S is used to “set” the element – set output Q to one 
R is used to “reset” or “clear” the element – set output Q to zero 
 
 
 
 
 
 
         NAND SR-Latch 
 
This gives us the ability to store a bit (either 0 or 1) 
 

 

Watch the video http://youtu.be/ti5jD7Q7BSA  

Gated D-Latch 

CS210 35 

Two inputs: D (data) and WE (write enable) 
" when WE = 1, latch is set to value of D 

• S = D, R = NOT(D) 
" when WE = 0, latch holds previous value 

• S = R = 0 

WE 

WE 

D0 D1 D2 D3 

Q0 Q1 Q2 Q3 

A 4 bit register 



20/08/14 

13 

CS210 37 

Memory 

address 
decoder 

address 

write 
enable 

input bits 

output bits 

Finite State Machines 

A description of a system with the following components: 
 

1.  A finite number of states 
2.  A finite number of external inputs 
3.  A finite number of external outputs 
4.  An explicit specification of all state transitions 
5.  An explicit specification of what determines each 

external output value 

Often described by a state diagram. 
–  Inputs trigger state transitions. 
–  Outputs are associated with each state (or with each 

transition). 

CS210 39 

Finite State Machines 

The turnstile has 2 states 
•  locked and unlocked 
The turnstile has 2 inputs 
•  putting in a coin (coin) 
•  pushing the bar (push) 

State diagram 
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Storage: Master-Slave Flip flop 

During 1st phase (clock=1), 
previously-computed state in A 
becomes current state in Latch B 
and is sent to the logic circuit. 

During 2nd phase (clock=0), 
next state, computed by 
logic circuit, is stored in 
Latch A. 

A B 
From combinatorial 
logic circuit 

To combinatorial 
logic circuit 

Master-slave edge triggered D flip-flop 

CS210 41 

Traffic Sign State Diagram 

State bit S1 State bit S0 

Switch on 

Switch off 

Outputs 

Transition on each clock cycle 

DANGER 
MOVE 
RIGHT 

1 

2 

3 

4 

5 

CS210 42 

Traffic Sign Truth Tables 

Outputs 
(depend only on state: S1S0) 

S1 S0 Z Y X 

0 0 0 0 0 

0 1 1 0 0 

1 0 1 1 0 

1 1 1 1 1 

Lights 1 and 2 
Lights 3 and 4 

Light 5 

Next State: S1ʹ′S0ʹ′ 
(depend on state and input) 

On S1 S0 S1ʹ′	
 S0ʹ′	


0 - - 0 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 1 

1 1 1 0 0 

Switch 

Whenever On = 0 (false), next state is 00 (off) 
S1 & S0 are irrelevant 
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Traffic Sign Logic 

Master-slave 
flipflop 

Lights 1 and 2 On 

Lights 3 and 4 On 

Light 5 On 

CS210 44 

LC-3 Data Path 

Combinational 
Logic 

State Machine 

Storage 

CS210 45 

Von Neumann Model 

MAR MDR

MEMORY

* Monitor
* Printer
* LED
* Disk

OUTPUT

* Keyboard
* Mouse
* Scanner
* Card reader
* Disk

INPUT

PROCESSING UNIT

TEMPALU

PC
IR

CONTROL UNIT

MDR 

MAR 
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Instruction Processing 

Decode instruction 

Evaluate addresses 

Fetch operands from memory 

Execute operation 

Store result 

Fetch instruction from memory 

CS210 47 

Instruction 
• The instruction is the fundamental unit of work. 
• Specifies two things: 

–  opcode: operation to be performed (e.g. ADD) 
–  operands: data/locations to be used for operation 

• An instruction is encoded as a sequence of bits  (Just like 
data!) 

–  Often, but not always, instructions have a fixed length, 
such as 16 or 32 bits. 

–  Control unit interprets instruction: 
generates sequence of control signals to carry out operation. 

–  Operation is either executed completely, or not at all. 

• A computer’s instructions and their formats is known as its 
Instruction Set Architecture (ISA). 

CS210 48 

Example: LC-3 ADD Instruction 

• LC-3 has 16-bit instructions. 
– Each instruction has a four-bit opcode, bits [15:12]. 

• LC-3 has eight registers (R0-R7) for temporary 
storage 

– Sources and destination of ADD are registers 

“Add the contents of R2 to the contents of R6, 
and store the result in R6.” 
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Control Unit State Diagram 
The control unit is a state machine.  Here is part of a 
simplified state diagram for the LC-3: 

A more complete state diagram is in Appendix C 
It will be more understandable after Chapter 5 

CS210 50 

BR (PC-Relative) 

Compiler 
•  Translate high-level languages into machine code. 
•  The machine code version can be loaded into the machine 

and run without any further help as it is complete in itself.   
•  The high-level language version of the program is called the 

source code and the resulting machine code program is called 
the object code.  
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Assembler 

Assembler 

Linker 

Loader 

Runtime System 

Editor Translate to machine code 

Add library code 

Place code in appropriate memory locations 

Execute code 

Create source code 

/opt/lc3tools/lc3as 
usage: ./lc3as <ASM filename>  
 

LC-3 Assembly Language Syntax 

•  Each line of code is 
– An instruction 
– An assembler directive (or pseudo-op) 
– A comment 

•  Whitespace is ignored 
•  Instruction format: 

LABEL OPCODE OPERANDS ; COMMENTS 

optional mandatory 

C 
•  Developed at AT&T Bell Labs1969-73 
•  designed to provides constructs that 

map efficiently to machine instructions 
•  found lasting use in applications that 

had formerly been coded in assembly 
language 

•  Influenced C++, C#, Java, JavaScript, 
Limbo, LPC, Objective-C, Perl, PHP, 
Python… 


