CompSci. 210
introduction to
compuiting giftems
Review
foon life quideacoctaramil
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to computing

Computer = electronic genius?

- NO! Electronic idiot!
- Does exactly what we tell it to, nothing more. \qquad
Goal of CompSci. 210
You will be able to write programs in C
and understand what's going on underneath - no
magic! \qquad
Approach
- Build understanding from the bottom up
- Bits \Rightarrow Digital Logic \rightarrow Gates Processor - Instructions \Rightarrow Programming

Two Recurring Themes

Abstraction

- Productivity enhancer - don't need to worry about details...

Can drive a car without knowing how
the internal combustion engine works.

- ...until something goes wrong!

Where's the dipstick? What's a spark plug?

- Important to understand the components and how they work together

Hardware vs. Software

- It's not either/or - both are components of a computer system
- Even if you specialize in one, it is important to understand capabilities and limitations of both

The Turing Machine

\qquad
Mathematical model of a device that can perform any computation - Alan Turing (1936) \qquad

- ability to read/write symbols on an infinite "tape"
- state transitions, based on current state and symbol \qquad
Every computation can be performed by some
Turing machine. (Turing's thesis)

Universal Turing Machine

\qquad
A machine that can implement all Turing machines
-- this is also a Turing machine!

- inputs: data, plus a description of computation (other TMs)

> Universal Turing Machine
\qquad
\qquad
\qquad
U is programmable - so is a computer!

- instructions are part of the input data
- a computer can emulate a Universal Turing Machine

A computer is a universal computing device
Video http://vimeo.com/33559758
\qquad
\qquad
\qquad

From Theory to Practice

In theory, computer can compute anything \qquad that's possible to compute

- (caveat) given enough memory and time \qquad
In practice, solving problems involves \qquad computing under constraints.
- time
- weather forecast, next frame of animation,..
\qquad
- cost
- cell phone, automotive engine controller, ... \qquad
- power
- cell phone, handheld video game, ...

From Theory to Practice

\qquad
In theory, computer can compute anything \qquad
that's possible to compute

- (Caveat) given enough memory and time \qquad
In practice, solving problems involves \qquad computing under constraints.
- time \qquad
- weather forecast, next frame of animation, ...
- cost
- cell phone, automotive engine controller, ... \qquad
- power
- cell phone, handheld video game, ...

How do we solve a problem using a computer? \qquad

A systematic sequence of transformations between layers of abstraction \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Descriptions of Each Level

Problem Statement

- stated using "natural language"
- may be ambiguous, imprecise \qquad
Algorithm
- step-by-step procedure, guaranteed to finish
- definiteness, effective computability, finiteness \qquad
Program
- express the algorithm using a computer language
- high-level language, low-level language

Instruction Set Architecture (ISA)

- specifies the set of instructions the computer can perform
\qquad
- data types, addressing mode
\qquad

Descriptions of Each Level (cont.)

Microarchitecture

- detailed organization of a processor implementation
- different implementations of a single ISA

Logic Circuits

- combine basic operations to realize microarchitecture
- many different ways to implement a single function (e.g., addition)

Devices

- properties of materials, manufacturability

How do we represent data in a computer?

- At the lowest level, a computer is an electronic machine
- works by controlling the flow of electrons
- Easy to recognize two conditions:

1. presence of a voltage - we'll call this state " 1 "
2. absence of a voltage - we'll call this state " o "

- Could base state on value of voltage,
but control and detection circuits much more complex.
- compare turning on a light switch to measuring or regulating voltage

Unsigned Integers - binary

An n-bit unsigned integer represents any of 2^{n} (integer)
values:
from 0 to $2^{n}-1$.

2^{2}	2^{1}	2^{0}	Value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

How to convert decimal to binary video http://youtu.be/aWxiXU02ZQM
\qquad

Two's Complement Binary

- Problems with sign-magnitude and 1's complement
- two representations of zero (+0 and -0)
- arithmetic circuits are complex
- How to add two sign-magnitude numbers?

$$
\text { - e.g., try } 2+(-3)
$$

- How to add two one's complement numbers?

$$
- \text { e.g., try } 4+(-3)
$$

- Two's complement representation developed to make circuits easy for arithmetic.
- for each positive number (X), assign value to its negative (-X), such that $\mathrm{X}+(-\mathrm{X})=0$ with "normal" addition, ignoring carry out

00101	(5)		
$+\quad 11011$	(-5)		
00000	(0)	$\quad+\quad$	(9)
:---			
00000			
(0)			

Sign Extension (sext)

- Sometimes we want to convert a small number of bits into a larger number of bits
- If we just pad with zeroes on the left: \qquad

4-bit	8-bit	
0100 (4)	00000100	(still 4)
1100 (-4)	00001100	(12, not-4)

- Instead, propagate the MS bit (the sign bit):

4-bit		$\frac{8}{\text {-bit }}$	
0100	(4)		00000100
(still 4)			
1100	(-4)	11111100	(still -4)

2.17 \qquad
\qquad

Overflow

\qquad

- If operands are too big, their sum cannot be represented as an n-bit 2's comp number
- 5 bits can represent 2^{5} or 32 unsigned integers
- Or o to 15 positive and -1 to -16 as signed integers

unsigned	signed	
01110	(14)	01110
+01000	(8)	+01000
10110	(22)	
$\mathbf{0 1 0 1 1 0}$	(-10)	

- We have overflow in signed binary if:
- signs of both operands are the same, and - sign of sum is different.
- Another test -- easy for hardware:
- carry into MS bit does not equal carry out

Addition/Subtraction with 2's Complement

- Two's complement representation allows addition and subtraction from a single simple adder.

Figure 3.16 A circuit for adding two 4 -bit binary numbers

- Circuit to add $\mathrm{S}=\mathrm{A}+\mathrm{B}$
- To subtract S = A - B invert B and enable carry in

Logical Operations

- Operations on logical TRUE or FALSE
\qquad
- two states -- takes one bit to represent:
\qquad TRUE $=1$, FALSE $=0$

A	B	A AND B		A	B	A OR B	
0	0	0	0	0	0		NOT A
0	1	0		0	1	1	
1	0	0		1	0	1	1
1	1	1		1	1	1	

- View n-bit number as a collection of n logical values - operation applied to each bit independently (bitwise)

Examples of Logical Operations

\qquad

- AND	AND	$\begin{aligned} & 11000101 \\ & 00001111 \end{aligned}$
- AND with zero $=0$ - AND with one = no change		00000101
- OR		11000101
- useful for setting bits	OR	00001111
- OR with one = 1		11001111
- NOT		
- unary operation	NOT	11000101
one argument flips every bit		00111010

\qquad
\qquad
\qquad
\qquad

NOT -11000101 \qquad
\qquad

Hexadecimal Notation

\qquad
(not a representation)

- It is often convenient to write binary (base-2) numbers using hexadecimal (base-16) notation instead.
- fewer digits -- four bits per hex digit
- less error prone -- easy to corrupt long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	A	10
0011	3	3	1011	B	11
0100	4	4	1100	c	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

\qquad
\qquad
\qquad
\qquad

Converting from Binary Hexadecimal

\qquad

- Every four bits is a hex digit
- start grouping from right-hand side

This video shows you how to convert binary to hex http://www.youtube.com/watch?v=W NpD248CdE (with binary to octal thrown in)

Fractions: Fixed-Point

\qquad

- How can we represent fractions?
- Use a "binary point" to separate positive
from negative powers of two -- just like "decimal point."
-2 's comp addition and subtraction still work \qquad
- only if binary points are aligned

00101000.101 (40.625)
+ $11111110.110(-1.25)$ 00100111.011 (39.375)

No new operations -- same as integer arithmetic
Video: how to convert decimal fractions to binary http://youtu.be/Y4Q9PnjKhac

Very Large and Very Small: Floating-Point

- Large values: 6.023×10^{23}-- requires 79 bits \qquad
- Small values: $6.626 \times 10^{-34}--$ requires >110 bits
- Use equivalent of "scientific notation": Fx 2^{E}
- Need to represent F (fraction), E (exponent), and sign.
- IEEE 754 Floating-Point Standard (32-bits):

- Exponent uses "biased" representation (no sign bit)
- Fraction has implicit 1

Video converting decimal to floating-point binary representation http://youtu.be/iQFG7sAa7i4

Floating-Point Arithmetic

\qquad

- Floating point operations may overflow but, more importantly, floating point operations are inherently
\qquad inexact
$>$ Some numbers (e.g. "repeating decimal") cannot be \qquad represented exactly.
$>$ Introduces the "Rounding" problem
- Every inexact result creates a difference between the mathematical value and the computed value.
- Errors accumulate, often benignly by cancelling out.
- Worst-case accumulation of error can be \qquad enormous.

Logic Gates			
Use switch behavior of transistors to implement logical functions: AND, OR, NOT			
Digital symbols: - recall that we assign a range of analog voltages to each digital (logic) symbol			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DeMorgan's Law

\qquad
Converting AND to OR (with some help from NOT)
Consider the following gate: \qquad

[^0]
\qquad

Multiplexer (MUX)

n-bit selector and 2^{n} inputs, one output

- output equals one of the inputs, depending on selector $\mathrm{S}_{1} \& \mathrm{~S}_{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gated D-Latch

Two inputs: D (data) and WE (write enable)

- when WE = 1 , latch is set to value of D
- $\mathrm{S}=\mathrm{D}, \mathrm{R}=\operatorname{NOT}(\mathrm{D})$
- when $\mathrm{WE}=0$, latch holds previous value
- $\mathrm{S}=\mathrm{R}=\mathrm{O}$
 ${ }^{35}$

A 4 bit register

\qquad

Finite State Machines

A description of a system with the following components:

1. A finite number of states
. A finite number of external inputs
2. A finite number of external outputs
3. An explicit specification of all state transitions
4. An explicit specification of what determines each external output value

Often described by a state diagram.

- Inputs trigger state transitions.
- Outputs are associated with each state (or with each transition).

Finite State Machines
The turnstile has 2 states - locked and unlocked The turnstile has 2 inputs - putting in a coin (coin) - pushing the bar (push)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Storage: Master-Slave Flip flop	
Master-slave edge triggered D flip-flop	
During $1^{\text {st }}$ phase (clock=1), previously-computed state in A becomes current state in Latch and is sent to the logic circuit.	During 2nd phase (clock=0), next state, computed by logic circuit, is stored in Latch A .
${ }_{\text {cs270 }}$	

Traffic Sign Truth Tables			
Outputs (depend only on state: $\mathrm{S}_{1} \mathrm{~S}_{0}$)		Next Stat (depend on sta	$\mathrm{e}: \mathrm{S}_{1} \mathrm{~S}_{0}^{\prime}$ te and input)
$\mathrm{Sl}_{1} \mathrm{~S}_{0}$			$\begin{array}{\|cc} \mathrm{S}_{1}^{\prime} & \mathrm{S}_{0}{ }^{\prime} \\ \hline \mathrm{o} & \mathrm{o} \end{array}$
- o	- 00	$1 \begin{array}{lll}1 & 0 & 1\end{array}$	10
$0 \quad 1$	$1{ }^{1}$	$\begin{array}{lll}1 & 1 & 0\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$
10	$1 \begin{array}{lll}1 & 1 & 0\end{array}$	$\begin{array}{lll}1 & 1 & 1\end{array}$	0 o
Whenever $\mathrm{On}=0$ (false), next state is 00 (off) ${\operatorname{css} 2{ }^{2}} \& S_{0}$ are irrelevant			

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Instruction \qquad
-The instruction is the fundamental unit of work.
-Specifies two things: \qquad

- opcode: operation to be performed (e.g. ADD)
- operands: data/locations to be used for operation
-An instruction is encoded as a sequence of bits (Just like data!)

Often, but not always, instructions have a fixed length, such as 16 or 32 bits.

- Control unit interprets instruction:
generates sequence of control signals to carry out operation. \qquad
- Operation is either executed completely, or not at all.
-A computer's instructions and their formats is known as its
\qquad Instruction Set Architecture (ISA).

Cs210 \qquad

Example: LC-3 ADD Instruction

\qquad
-LC-3 has 16-bit instructions.

- Each instruction has a four-bit opcode, bits [15:12].
-LC-3 has eight registers (Ro-R7) for temporary \qquad storage
- Sources and destination of ADD are registers \qquad
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
\qquad
$\begin{array}{llllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0\end{array}$
"Add the contents of $R 2$ to the contents of R6, and store the result in R6."

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compiler

- Translate high-level languages into machine code.
- The machine code version can be loaded into the machine and run without any further help as it is complete in itself.
- The high-level language version of the program is called the source code and the resulting machine code program is called the object code.
\(\underset{\substack{Langlage)}}{\substack{Source Code

(Iigh-Level}} \longrightarrow\) COMPIER \quad| Object Code |
| :---: |
| Maxchine
 Langlage) |

\qquad
\qquad

LC-3 Assembly Language Syntax

- Each line of code is \qquad
- An instruction
- An assembler directive (or pseudo-op) \qquad
- A comment
- Whitespace is ignored
- Instruction format: \qquad
\qquad
\qquad

C

\qquad

- Developed at AT\&T Bell Labs1969-73
- designed to provides constructs that map efficiently to machine instructions

\qquad had formerly been coded in assembly language LANGUAGE
\qquad Limbo, LPC, Objective-C, Perl, PHP Python... \qquad
\qquad

[^0]: Shows that you can write an expression like "not (A or B)" as "($\operatorname{not} A)$ and $(\operatorname{not} B)$ ". Similarly, "not (A or B)" can be written as "(not A$)$ and $(\operatorname{not} \mathrm{B})$ "

 ## Watch this video

 http://youtu.be/tKnS3s8fOu4
 Therefore, you can implement any truth table using only NAND (or NOR) gates

