yale n. paft
sanjay . pafel

CompSci.210 introductionfo
compuling sustems

from bits & gates to C & begond

Review

20/08/14

Introduction to computing

Computer = electronic genius?
— NO! Electronic idiot!
— Does exactly what we tell it to, nothing more.

Goal of CompSci.210

You will be able to write programs in C

and understand what’s going on underneath — no
magic!

Approach
« Build understanding from the bottom up
« Bits = Digital Logic » Gates ® Processor » Instructions » C Programming

Two Recurring Themes

Abstraction

— Productivity enhancer — don’t need to worry about details...

Can drive a car without knowing how
the internal combustion engine works.

— ...until something goes wrong!
Where's the dipstick? What's a spark plug?
— Important to understand the components and how they work
together

Hardware vs. Software
— It’s not either/or — both are components of a computer system

— Even if you specialize in one, it is important to understand
capabilities and limitations of both

Big Idea #1: Universal Computing Device

All computers, given enough time and memory,
are capable of computing exactly the same things

Smart phone
Desktop

Supercomputer

20/08/14

The Turing Machine

Mathematical model of a device that can perform
any computation — Alan Turing (1936)
— ability to read/write symbols on an infinite “tape”
— state transitions, based on current state and symbol

Every computation can be performed by some
Turing machine. (rurings thesis)

— at+b ab —» T —> ab

! Tadd mul

Turing machine that adds Turing machine that multiplies

For more about Alan Turing, see

For more info about Turing machines, see
http://www.turing.org.uk/turing/

http://www.wikipedia.org/wiki/Turing_machine/

15

Universal Turing Machine

A machine that can implement all Turing machines
-- this is also a Turing machine!

— inputs: data, plus a description of computation (other

TMs) .

Ta i’ Tmu —

dd: 1l U

a,b,c—>| — c(a+b)

Universal Turing Machine

U is programmable — so is a computer!
* instructions are part of the input data
* a computer can emulate a Universal Turing Machine

A computer is a universal computing device
Video http://vimeo.com/33559758

From Theory to Practice

In theory, computer can compute anything
that’s possible to compute
— (caveat) given enough memory and time

In practice, solving problems involves
computing under constraints.
— time
« weather forecast, next frame of animation, ...

— cost
« cell phone, automotive engine controller, ...

— power
« cell phone, handheld video game, ...

20/08/14

From Theory to Practice

In theory, computer can compute anything

that’s possible to compute
— (Caveat) given enough memory and time

In practice, solving problems involves
computing under constraints.
— time
« weather forecast, next frame of animation, ...
— cost
« cell phone, automotive engine controller, ...

— power
« cell phone, handheld video game, ...

Big Idea #2: Transformations Between
Layers

Problems

Devices

How do we solve a problem using a computer?
A systematic sequence of transformations

between layers of abstraction

Software Design:
choose algorithms and data structures

Algorithm

Programming:
use language to express design

Compiling/Interpreting:
convert language to

machine instructions
Instr Set
Architecture

20/08/14

Deeper and Deeper...

Instr Set
Architecture
Processor Design:
choose structures to implement ISA

Logic/Circuit Design:
gates and low-level circuits to

implement components

Process Engineering & Fabrication:
develop and manufacture
lowest-level components

Descriptions of Each Level

Problem Statement

— stated using "natural language"

— may be ambiguous, imprecise
Algorithm

— step-by-step procedure, guaranteed to finish

— definiteness, effective computability, finiteness
Program

— express the algorithm using a computer language

— high-level language, low-level language
Instruction Set Architecture (ISA)

— data types, addressing mode

— specifies the set of instructions the computer can perform

Descriptions of Each Level (cont.)

Microarchitecture
— detailed organization of a processor implementation
— different implementations of a single ISA
Logic Circuits
— combine basic operations to realize
microarchitecture

— many different ways to implement a single function
(e.g., addition)
Devices
— properties of materials, manufacturability

20/08/14

How do we represent data in a computer?

At the lowest level, a computer is an electronic
machine
— works by controlling the flow of electrons

« Easy to recognize two conditions:
1. presence of a voltage — we’ll call this state “1”

2. absence of a voltage — we’ll call this state “o

» Could base state on value of voltage,
but control and detection circuits much more
complex.
— compare turning on a light switch to measuring or
regulating voltage

Unsigned Integers - binary

An n-bit unsigned integer represents any of 2" (integer)
values:
from o to 2"-1.

N
N
N

=]

Value

B B B B O O O O
B =B O O B B O O
P O B O O Fr O
N o U s W N B O

How to convert decimal to binary video http://youtu.be/qWxiXU02ZQM

Two’s Complement Binary

» Problems with sign-magnitude and 1’s complement
— two representations of zero (+0 and —0)
— arithmetic circuits are complex
« How to add two sign-magnitude numbers?
— eg.,try2+(-3)
« How to add two one’s complement numbers?
- eg.,try4+(-3)
« Two’s complement representation developed to make
circuits easy for arithmetic.

— for each positive number (X), assign value to its negative (-X),
such that X + (-X) = o with “normal” addition, ignoring carry out

00101 (5) 01001 (9)
+_11011 (-5) + (-9)
00000 (0) 00000 (0)

20/08/14

Sign Extension (sext)

« Sometimes we want to convert a small number
of bits into a larger number of bits

« If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not -4)
« Instead,

propagate the MS bit (the sign bit):
4-bit 8-bit
0100 (4 00000100 (still 4)
1100 (-4) 11111100 (still -4)

Overflow

« If operands are too big, their sum cannot be
represented as an n-bit 2’s comp number

« 5 bits can represent 25 or 32 unsigned integers
« Or o to 15 positive and -1 to -16 as signed integers

unsigned signed

01110 (14) 01110 (14)
+_01000 (8) +.01000 (8)

10110 (22) 10110 (-10)

» We have overflow in signed binary if:
— signs of both operands are the same, and
— sign of sum is different.

« Another test -- easy for hardware:
— carry into MS bit does not equal carry out

Addition/Subtraction with 2’s Complement

« Two’s complement representation allows addition and

subtraction from a single simple adder.

A B - A]‘0 i
Circuit of Circuit of Circuit of Circuit of fe—0
Figure 3.15 Figure 3.15 Figure 3.15 Figure 3.15
é [y G
S S, kS S

Figure 3.16 A circuit for adding two 4-bit binary numbers

« Circuittoadd S=A+B

» Tosubtract S = A— B invert B and enable carry in

20/08/14

Logical Operations

« Operations on logical TRUE or FALSE
— two states -- takes one bit to represent:
TRUE=1, FALSE=0

A B A AND B A B| AorB A‘ NOT A
0 0 0 00 0 0 1
01 0 01 1 1 0
10 0 10 1

11 1 11 1

« View n-bit number as a collection of n logical values
— operation applied to each bit independently (bitwise)

Examples of Logical Operations

11000101

« AND
— useful for clearing bits AND__00001111
« AND with zero = 0 00000101
« AND with one = no change
+ OR il for settine bit 11000101
— useful for setting bits
« OR with zero :%10 change OR__00001111
« OR withone = 1 11001111
« NOT
— unary operation. . NOT__11000101
one argument flips every bit 00111010

Hexadecimal Notation
(not a representation)

« Itis often convenient to write binary (base-2)
using hexadecimal (base-16) notation instead.
— fewer digits -- four bits per hex digit
— less error prone -- easy to corrupt long string of 1’s and 0’s

Binary Hex Decimal Binary Hex | Decimal

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

10
11
12
13
14
15

N o uSswWwNRO
N o uUAsWNRO
m"TmMOO®@> 0 ®

20/08/14

Converting from Binary Hexadecimal

« Every four bits is a hex digit
— start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111
S
3 A 8 F 4 D 7

This is not a new machine representation,
just a convenient way to write the number.

This video shows you how to convert binary to hex
http://www.youtube.com/watch?v=W_NpD248CdE
(with binary to octal thrown in)

Fractions: Fixed-Point

» How can we represent fractions?

— Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

— 2" s comp addition and subtraction still work
« only if binary points are aligned
21=05
22=0.25
17 23=0.125
00101000.101 (40.625)
+ 11111110.110 (-1.25)
00100111.011 (39.375)

No new operations -- same as integer arithmetic ‘

Video: how to convert decimal fractions to binary http://youtu.be/Y4Q9PnjKhac

Very Large and Very Small: Floating-Point

» Large values: 6.023 x 10?3 -- requires 79 bits

» Small values: 6.626 x 10734 -- requires >110 bits

« Use equivalent of “scientific notation”: F x 2

« Need to represent F (fraction), E (exponent), and sign.
« IEEE 754 Floating-Point Standard (32-bits):

15, 8b 23b

‘ S‘ Exponen* Fraction

« Exponent uses “biased” representation (no sign bit)
« Fraction has implicit 1

Video converting decimal to floating-point binary representation
http://youtu.be/iQFG7sAa7i4

20/08/14

Floating-Point Arithmetic

» Floating point operations may overflow but, more
importantly, floating point operations are inherently
inexact

» Some numbers (e.g. “repeating decimal”) cannot be
represented exactly.

» Introduces the “Rounding” problem
» Every inexact result creates a difference between

the mathematical value and the computed value.
» Errors accumulate, often benignly by cancelling
out.
» Worst-case accumulation of error can be
enormous.

Logic Gates

Use switch behavior of transistors
to implement logical functions: AND, OR, NOT

Digital symbols:
— recall that we assign a ranlge of analog voltages to
each digital (loglc§symb0
Digital Values » “0” Illlegal “1”
! 1 I 1
Analog Values » (I) 0?5 2I.4 219 Volts

- assi%r.lment of voltage ranges depends on
electrical properties of transistors being used

« typical values for "1": +5V, +3.3V, +2.9V
« from now on we'll use +2.9V

Inverter (NOT Gate)

In Out

In | out In | out
oV| 29V o 1
29V| oV 1 o

cs210

20/08/14

Basic Logic Gates

>

NOT

A
A A
S —me]
OR NOR
A A
i e

AND NAND

cs210 29

>

+B
B

&

DeMorgan's Law

Converting AND to OR (with some help from NOT)
Consider the following gate:

B

1

A
B
. Shows that you can write an
A expression like "not (A or B)"

ABlA B Bl A as "(not A) and (not B)".

ool1 1 1 o Similarly, "not (A or B)" can be
written as "(not A) and (not B)"

> |
vell

o 1|1 o o 1
Watch this video

1 0lo0 1 o 1 http://youtu.be/tKnS3s8fOu4

1 1lo o o 1 Therefore, you can implement

any truth table using only
cs210 NAND (or NOR) gates B

10

Decoder

*n inputs, 2" outputs
— exactly one output is 1 (true) for each possible input pattern

20/08/14

i 1, if AB=00
B
2-bit
H -
decoder } 1, if AB=01
Can detect a pattern in a) _
string of input bits — can O} 1, if AB=10
have any number of
inputs
D— 1,ifAB=11 .,
Multiplexer (MUX)

n-bit selector and 2" inputs, one output
— output equals one of the inputs, depending on selector S, & S,

A B C D

ABCD

A, if $=00
. B,ifS=01

7 C,ifS=10

& D.if S=11 4-to-1 MUX

cs210 32

Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out

A B Cy|S Cou
A B

T) 1)] oo of|o o

T T T I T | c
n 00 1|1 0
o1 0|1 o
o1 1|0 1
1001 0
10 1fo0 1
11 0fo 1
11 1|1 1

C S

out

cs210 33

11

SR-Latch: Simple Storage Element
Flip-Flop

S is used to “set” the element — set output Q to one
Ris used to “reset” or “clear” the element — set output Q to zero

SR latch operation
SR Action

vl
o

0 |0 Restricted combination
3 01 Q=1
10Q=0
NAND SR-Latch 11 No Change

B

This gives us the ability to store a bit (either o or 1)

Watch the video http:/youtu.be/ti5iD7Q7BSA

20/08/14

Gated D-Latch
Two inputs: D (data) and WE (write enable)

= when WE = 1, latch is set to value of D
*«S=D,R=NOT(D)
= when WE = 0, latch holds previous value

«S=R=0
D o—
Q
w
Q
A 4 bit register
D3 D2 D1 DO
7
WE
l
Q Q, Q Q

12

~%A ‘ 3 —{input s
=P
| O
N O
SEE | (A

LD ’T%
decoder

- Y b I a7
output bits 2 & «

20/08/14

Finite State Machines

A description of a system with the following components:

A finite number of states

. A finite number of external inputs

. A finite number of external outputs

. An explicit specification of all state transitions

. An explicit specification of what determines each
external output value

(3 N SRR

Often described by a state diagram.
— Inputs trigger state transitions.

— Outputs are associated with each state (or with each
transition).

Finite State Machines

The turnstile has 2 states
» locked and unlocked
The turnstile has 2 inputs
« putting in a coin (coin)
« pushing the bar (push)

State diagram

cs210 39

13

Storage: Master-Slave Flip flop

Master-slave edge triggered D flip-flop

A B
From combinatorial To combinatorial
logic circuit Do——D Q D Q—Q logic circuit
Clocko—E E Q— r E Q—Q
During 15t phase (clock=1), During 2" phase (clock=0),
previously-computed state in A next state, computed by
becomes current state in Latch B logic circuit, is stored in
and is sent to the logic circuit. Latch A.
csz10 0

20/08/14

cs210 a

Transition on each clock cycle

Traffic Sign Truth Tables

Outputs Next State: S,'Sy’
(depend only on state: S,S) (depend on state and input)
Lights 1 and 2 ’7 Switch
Lights 3 and 4

on S, S,|s/ s/

’7 Light 5
o

1 o o o 1

- - o o

1 o 1 1 [0}

1 1 o 1 1

1 1 1 [¢]

Whenever On = 0 (false), next state is 00 (off)
csz% & S are irrelevant

14

20/08/14

Traffic Sign Logic

In — Z Lights 1.and 2 On
| 1 :D— Y Lights 3and 4 On
X Light50n
Clock

Storage Element 1

Cs210 a

LC-3 Data Path

Combinational
Logic

Storage

State Machine

Von Neumann Model

MEMORY

|
v

i
|
|
|
INPUT ' ouTPUT
|
* Keyboard | - Monitor
. Mouse ! * Printer
* Scanner I PROCESSING UNIT Ltp
* Card reader i * Disk
* Disk |
Iy | TEMP A
) | !
i i !
- T !
I | 1 .
| | | .
| | | !
H H . '
CONTROL UNIT
J
cs210 -

15

Instruction Processing
3

‘ Fetch instruction from memory |

‘ Decode instruction |

‘ Evaluate addresses |

‘ Fetch operands from memory |

‘ Execute operation |

‘ Store result |

cs210 a6

20/08/14

Instruction

«The instruction is the fundamental unit of work.
«Specifies two things:

— opcode: operation to be performed (e.g. ADD)

— operands: data/locations to be used for operation

«An instruction is encoded as a sequence of bits (Just like
data!)

— Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

— Control unit interprets instruction:
generates sequence of control signals to carry out operation.

— Operation is either executed completely, or not at all.

<A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).

cs210 a7

Example: LC-3 ADD Instruction

+L.C-3 has 16-bit instructions.

— Each instruction has a four-bit opcode, bits [15:12].
+LC-3 has eight registers (Ro-R7) for temporary
storage

— Sources and destination of ADD are registers

15 14 13 12 11 10 9 8 7 € 5 4 3 2 1 0

aDD | Dst | Srcl |00 0 src2
15 14 13 12 11 10 9 8 7 6 & 4 3 2 .} 0
0001/110[0o10/0j00110

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

cs210 48

16

Control Unit State Diagram

The control unit is a state machine. Here is part of a
simplified state diagram for the LC-3:

MAR « PC

EIIDR - M[MARJ Decode

IR[15:12]
IR « MDR

PC«PC+1
eee
O,
S
\OR
.
.

A more complete state diagram is in Appendix C

It will be more understandable after Chapter 5 40

20/08/14

BR (PC-Relative)

5 14 13 12 11 1¢ 9 8 7 2 1 0

1 (3 5 4 3
BR[o 0 0 o[n[z[p PCoffset? |

PC

cs210 50

Compiler

« Translate high-level languages into machine code.

« The machine code version can be loaded into the machine
and run without any further help as it is complete in itself.

« The high-level language version of the program is called the
source code and the resulting machine code program is called
the object code.

Source Code Obiect Code
(High-Level — 5 COMPILER | (Machine
Language) Language)

17

Assembler

Create source code

Translate to machine code

Add library code

Place code in appropriate memory location

Execute code

Runtime System|

/opt/lc3tools/Ic3as
usage: ./Ic3as <ASM filename>

20/08/14

LC-3 Assembly Language Syntax

» Each line of code is
— An instruction
— An assembler directive (or pseudo-op)
— A comment

* Whitespace is ignored

* Instruction format:

LABEL OPCODE OPERANDS ; COMMENTS

— l

optional mandatory

C

Developed at AT&T Bell Labs1969-73
designed to provides constructs that

map efficiently to machine instructions THE
found lasting use in applications that
had formerly been coded in assembly
language PROSRA

Influenced C++, C#, Java, JavaScript,
Limbo, LPC, Objective-C, Perl, PHP,

Python...

18

