Computer Science 210
Computer Systems 1

Lecture 12

Assembly Language

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

20/08/14

Problems with Machine Language

* Opcodes are in binary, hard to remember
* Immediate operands, registers are in binary

* Destinations of branches are in binary and
must be calculated by hand

* Memory locations (variables) are in binary

Problems with Machine Language

* When an instruction is inserted or removed,
many fields in other instructions must be
updated

* Easy to get the format of an instruction wrong

Needed Improvements

* Mnemonic symbols (ADD, BRp) for opcodes

* Mnemonic symbols (count, endwhile) for data
variables in memory and destinations of
branches

* Automatic update of addresses after
modifications to code

20/08/14

Needed Improvements
* Use of decimal or hex numeric literals for

immediate operands
* #101, x3A0B

* Simple syntax checking (format of
instructions, undeclared labels, etc.)

* Reserve memory and initialize it

Program Development

Create source code

‘ Editor H Assembler
Add library code
Place code in appropriate memory locations
Execute code

/Jopt/Ic3tools/Ic3as
usage: ./Ic3as <ASM filename>

Translate to machine code

20/08/14

An Assembly Language Program

:‘ Program to multiply a number by the constant 6
; Author: John Smith

.ORIG x3050 ; Beginning address of code
1D Rl, SIX
LD R2, NUMBER
AND R3, R3, #0 ; Clear R3. It will
; contain the product.
; The loop
AGAIN D R3, R3, R2

AD]
ADD Rl, Rl, #-1 ; Rl keeps track of

BRp AGAIN ; the iteration.

HALT

NUMBER .BLKW 1

; Data for the program
SIX .FILL x0006

.END

LC-3 Assembly Language Syntax

* Each line of code is
— An instruction

— An assembler directive (or pseudo-op)
— A comment

* Whitespace is ignored

* Instruction format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Opcodes and Operands

Opcodes are reserved symbols like AND, ADD,
etc.

Operands

— Registers: specified by Ri

— Numbers: indicated by # (decimal) or x (hex)
— Label: symbolic name of memory location

* Separated by a comma

Labels and Comments

* Placed at the beginning of a line or included
as an operand within an instruction

LOOP ADD RI1,R1,#-1
BRp LOOP

* A comment begins with ; and extends to
the end of that line

20/08/14

Assembler Directives

Tell the assembler what to do at assembly time, start with a dot (.)

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with
value n

.STRINGZ |n-character |allocate n+1 locations,

string initialize w/characters and null

terminator

Trap Codes

Pseudo-instructions for trap codes:

Code | Equivalent | Description

HALT |TRAP x25 |Halt execution and print message to
console.

IN TRAP x23 |Print prompt on console,

Character stored in R0[7:0].

read (and echo) one character from keybd.

ouT TRAP x21 |Write one character (in RO[7:0]) to console.

GETC |TRAP x20 |Read one character from keyboard.
Character stored in R0[7:0].

PUTS |TRAP x22 |Write null-terminated string to console.
Address of string is in RO.

Style Guidelines

Use the following style guidelines to improve
the readability and understandability of your programs:

* Provide a program header, with author’s name, date,
etc., and purpose of program.

« Start labels, opcode, operands, and comments in same
column for each line (unless entire line is a comment).

* Use comments to explain what each register does.
* Give explanatory comment for most instructions.

20/08/14

Style Guidelines

Use the following style guidelines to improve
the readability and understandability of your programs:

* Use meaningful symbolic names.

* Mixed upper and lower case for readability
ASCIItoBinary, InputRoutine, SaveR1

* Provide comments between program sections.
* Each line must fit on the page -- no wraparounds
* Long statements split in aesthetically pleasing manner

Human-Readable Machine Language

Computers like 1s and Os:

0001001001100001
People like symbols:
ADD R1, R1, #1 ; Increment R1

The assembler makes this happen!

Example:diff = first - second

;; Author: John Smith
This program subtracts the number in the variable SECOND from FIRST
i and stores the result in DIFF

;; Pseudocode design
; diff = first - second
LORIG x3000

;; Register usage
VRO =

; Program code
LD RO, FIRST
LD R1, SECOND
NOT R, R1
ADD R1, R1, #1
ADD R2, RO, R1
ST R2, DIFF

HALT
; Data variables
FIRST BLKW 1
SECOND BLKW 1

DIFF .BLKW 1

.END

The Assembly Process

Convert the program in the source (.asm) file to an executable file (.obj) for the
LC-3 simulator

—>| 1st Pass |—>|2nd PassI ¢
Image

First pass:
« Scan program file
« Find all labels and calculate their addresses, creating a symbol table

Second pass:
« Convert instructions to machine language, using the symbol table

20/08/14

First Pass: Construct the Symbol Table

1. Findthe .ORIG statement,
which tells us the address of the first instruction.

Initialize location counter (LC), which keeps track of the
current instruction.
2. For each non-empty line in the program:

a) If line begins with label, add label and LC to symbol table.

b) Increment LC.

— NOTE: If statement is .BLKW or . STRINGZ,
increment LC by the number of words allocated.

3. Stopwhen .END statement is reached.

NOTE: A line that contains only a comment is considered an empty line.

Example Symbol Table

Table in subtract.sym

LD RO, FIRST // Symbol table

LD R1l, SECOND // Scope level 0:

NOT R1, R1 // Symbol Name Page Address
ADD R1, R1, #1 L
ADD R2, RO, R1 // FIRST 3007

ST R2, DIFF /] SECOND 3008

HALT /| DIFF 3009

FIRST .BLKW 1
SECOND .BLKW 1
DIFF .BLKW 1

20/08/14

Second Pass: Generate Machine Code

For each executable assembly language statement,
generate the corresponding machine language instruction

If operand is a label,
look up the address from the symbol table

Potential errors to detect and flag:

Improper number or type of arguments
ex: NOT R1,#7
ADD R1,R2

ADD R3,R3,NUMBER

Immediate argument too large
ex: ADD R1,R2,#1023

Address (associated with label) more than 256 from instruction; can’t use
PC-relative addressing mode

Object File Format

An LC-3 object file contains

o Starting address (location where program must be
loaded)

o followed by...

* Machine language instructions

Multiple Object Files

An object file is not necessarily a complete program.
¢ system-provided library routines
¢ code blocks written by multiple developers

For LC-3 simulator, we can load multiple object files into
memory, then start executing at a desired address.

¢ system routines, such as keyboard input, are loaded
automatically loaded into “system memory,” below x3000

o user code should be loaded between x3000 and xFDFF
* each object file includes a starting address

o be careful not to load overlapping object files

e In LC-3, first file contains the program

¢ Remaining files contain data

20/08/14

The Loader

Loading is the process of copying an executable image
into memory

* more sophisticated loaders are able to relocate images
to fit into available memory

* must readjust branch targets, load/store addresses

The Linker

Linking is the process of resolving symbols between
independent object files

¢ suppose we define a symbol in one module,
and want to use it in another

¢ the notation . EXTERNAL, is used to tell assembler
that a symbol is defined in another module

e linker will search the symbol tables of other modules
to resolve symbols and complete code generation
before loading

Using Branch Instructions

Compute sum of 12 integers.

Numbers start at location x3100. Program starts at location x3000.

R1 < x3100
R3 0
R2 — 12
|
R4 — M[R1]
R3 « R3+R4
NO R1 < R1+1
R2 « R2-1
YES \;
cs210 2

20/08/14

Sample Program

Address Instruction Comments
%3000 11 1000101111111 1 R71<x3100(PC+0x0FF)
%¥3001 0101011011100000 R3 <0
x3002 0101010010100000 R2<0
x3003 0001010010101100 R2 <12
x3004 0000010000000 1O0 1 /IfZ gotox300A(PC+5)
x3005 011010000100000 0 LoadnextvaluetoR4
x3006 0001011011000100 Add to R3
x3007 000100100110000 1 IncrementR1 (pointer)
x3008 0001010010111111 DecrementR2(counter)
x3009 0000111111111010 Goto x3004 (PC-6)

JMP (Register)

Jump is an unconditional branch -- always taken.
— Target address is the contents of a register.
— Allows any target address.

15 12 11 10

5 14 13 9 8 6 5 4 3 2 1 0
JMP 1 1 0 0]/0 0 0] Base [0 0 0 0 0 0

PC Register File

[Base

cs210 27

TRAP

13 12 11 10 & 8

15 14 [
TRAP[1 1 1 1J0 0 0 o] tr

4 32 1
pvect8 ‘

Calls a service routine, identified by 8-bit “trap
vector.

vector |routine

x23 |input a character from the keyboard

x21 | output a character to the monitor

x25 | halt the program

When routine is done,

PC is set to the instruction following TRAP
(We’ 1l talk about how this works later.)

cs210 28

20/08/14

Another Example

Count the occurrences of a character in a file
— Program begins at location x3000
— Read character from keyboard
— Load each character from a “file”
- File is a sequence of memory locations

- Starting address of file is stored in the memory location
immediately after the program

— If file character equals input character, increment counter
— End of file is indicated by a special ASCII value: EOT (x04)

— At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)

+A special character used to indicate the end of a sequence
is often called a sentinel
— Useful when you don’t know ahead of time how many times
to execute a loop.

Flow Chart
!
Count=0
(R2=0) . Done? Yes J Convert count to
(R1 7= EOT), ASCII character
:
Ptr = 1st file character NO ’
(R3 = M[x3012]) v
Print count
v YES Match? NO (TRAP x21)
nput char
from keybd
TRar 23 |
v HALT
v Incr Count (TRAP x25)
Load char from file (R2=R2+1)
o <t
Load next char from file

10

Program (1 of 2)

20/08/14

Address Instruction Comments
x3000 0101010010100000 R2 ¢ 0 (counter)
%3001 0010011000010000 R3 « M[x3102] (ptr)
%3002 1 1110000001000 11 InputtoRO(TRAPx23)
x3003 0110001011000000 R1 « M[R3]
x3004 0001100001111100 R4 « R1- 4 (EOT)
x3005 0000010000001000 If Z, goto x300E
x3006 1001001001111111 R1« NOT R1
x3007 000100100110000°1 R1«R1+1
X3008 0001001001000000 R1« R1+R0
x3009 0000101000000001 If N or P, goto x3008
cs210 =
Program (2 of 2)
Address Instruction Comments
x300A 0001010010100001 R2eR2+1
x300B 0001011011100001 R3¢« R3+1
x300C 0110001011000000 R1« M[R3]
x3000 0000111111110110 Goto x3004
x300E 001 0000000000100 RO « M[x3013]
x300F 0001000000000010 RO« RO +R2
%3010 1111000000100001 Print RO (TRAP x21)
%3011 1111000000100101 HALT (TRAP x25)
X3012 Starting Address of File
x3013 0000000000110000 ASCII x30 (‘0)
cs210 s
D —— jp— Jf
LC-3
Data Path “ol
Revisited sl
Filled arrow e

= info to be processed

Unfilled arrow

= control signal

<7 GateaLu

< i3
wh e 16
Lo.MDR —o[DR] AR Jo Lomar
MEMORY ‘ euT ‘ ‘ outeuT ‘

11

GasARMUXA

Data Path Components
Global bus

— special set of wires that carry a
16-bit signal to many
components
inputs tg the bus are “tri-state
devices,” that only place a
signal on the bus when they
are enabled
only one (16-bit) signal should
be enabled at any time
« control unit decides which
signal “drives” the bus
— any number of components
can read the bus
« register only captures bus
data if it is write-enabled
by the control unit

20/08/14

Memory

— Control and data registers for
memory and I/0O devices

— memory: MAR, MDR (also
control signal for read/write)

Data Path Components

« ALU
- Accetpts inputs from register file § .
and from sign-extended bits from IR (immediate field).
— Output goes to bus.
« used by condition code logic, register file, memory

* Register File
— Two read addresses (SR1, SR2), one write address (DR)
— Input from bus
« result of ALU operation or memory read
— Two 16-bit outputs
« used by ALU, PC, memory address
« data for store instructions passes through ALU

Data Path Components

+ PCand PCMUX
— Three inputs to PC, controlled by PCMUX
1. PC+1 - FETCH stage
2. Address adder — BR, JMP
3. bus — TRAP (discussed later)

« MAR and MARMUX
— Two inputs to MAR, controlled by MARMUX
1. Address adder — LD/ST, LDR/STR
2. Zero-extended IR[7:0] -- TRAP (discussed later)

12

Data Path Components

+ Condition Code Logic
— Looks at value on bus and generates N, Z, P signals
— Registers set only when control unit enables them
(LD.CC)

« only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

* Control Unit — Finite State Machine
- 0}111 each machine cycle, changes control signals for next
phase .
of instruction processing
« who drives the bus? (GatePC, GateALU, ...)
« which registers are write enabled? (LD.IR, LD.REG, ...)
« which operation should ALU perform? (ALUK)

— Logic includes decoder for opcode, etc.

20/08/14

13

