Computer Science 210

Computer Systems 1

Lecture 11
The Instruction Cycle
Ch. 5: The LC-3 ISA

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

20/08/14

Instruction Processing: FETCH

Finite State Machine
Load next instruction
(at address stored in PC) from memory
into Instruction Register (IR)
— Copy contents of PC into MAR
— Send “read” signal to memory
— Copy contents of MDR into IR

Then increment PC, so that it points to
the next instruction in sequence.
— PCbecomes PC+1.

cs210

Instruction Processing: DECODE

First identify the opcode.

— In LC-3, this is always the first four bits of instruction
— A 4-t0-16 decoder asserts a control line corresponding

to the desired opcode

Depending on opcode, identify other operands
from the remaining bits
— Example:
« for LDR, last six bits is offset
« for ADD, last three bits is source operand #2

cs210

Instruction Processing: EVALUATE

ADDRESS

For instructions that require memory
access, compute address used for access

Examples:
— add offset to base register (as in LDR)
— add offset to PC
— add offset to zero

cs210

20/08/14

Instruction Processing: FETCH
OPERANDS

Obtain source operands needed to
perform operation.

Examples:
— load data from memory (LDR)
— read data from register file (ADD)

cs210

kL

EA

OoP

EX

H.

Instruction Processing: EXECUTE

Perform the operation,
using the source operands.

Examples:
— send operands to ALU and assert ADD signal
— do nothing (e.g., for loads and stores)

cs210

Instruction Processing: STORE
RESULT

*Write results to destination
(register or memory)

l

*Examples:
— result of ADD is placed in destination register
— result of memory load is placed in
destination register

— for store instruction, data is stored to memory | | 5X
« write address to MAR, data to MDR
«+ assert WRITE signal to memory

m

cs210

20/08/14

Changing the Sequence of Instructions

In the FETCH phase,
we increment the Program Counter by 1

What if we don’t want to always execute the instruction
that follows this one?

— examples: loop, if-then, function call

Need special instructions that change the contents
of the PC.
These are called control instructions

— jumps are unconditional — they always change the PC

— branches are conditional — they change the PC only if
some condition is true (e.g., the result of an ADD is zero)

cs210 8

Example: LC-3 JMP Instruction

Set the PC to the value contained in a register.
This becomes the address of the next instruction to
fetch.

unused unused
15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
JMP |0 0 0] Base [0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1100000/011 0000

=}

o
o

“Load the contents of R3 into the PC.”

cs210 9

Instruction Processing Summary

Instructions look just like data — it’s all interpretation.

Three basic kinds of instructions:
— computational instructions (ADD, AND, ...)
— data movement instructions (LD, ST, ...)
— control instructions (JMP, BR, ...)

Six basic phases of instruction processing:
F-D—-EA—-OP—-EX—S
— not all phases are needed by every instruction
— phases may take variable number of machine cycles

cs210 10

20/08/14

Control Unit State Diagram

The control unit is a state machine. Here is part of a
simplified state diagram for the LC-3:

MAR « PC
PC « PC+1
ees
B

C

K
@DR P M[MA% Decode L5 oo C}_
-

IR[15:12]
IR « MDR

A more complete state diagram is in Appendix C
It will be more understandable after Chapter 5
cs210 B

Stopping the Clock

Control unit will repeat instruction processing sequence
as long as clock is running
— If not processing instructions from your application,
then it is processing instructions from the Operating System (OS)
— The OS is a special program that manages processor
and other resources
To stop the computer:
— AND the clock generator signal with ZERO
— When control unit stops seeing the CLOCK signal, it stops processing

Clock |) cLock
Generator
s Q
R
RUN
cs210 2

Instruction Set Architecture

ISA = All of the programmer-visible
components and operations of the computer

— memory organization
+ address space -- how may locations can be addressed?
+ addressibility -- how many bits per location?
— register set
+ how many? what size? how are they used?
— instruction set
+ opcodes
« data types
+ addressing modes

ISA provides all information needed for someone that wants to
write a program in machine language
(or translate from a high-level language to machine language)

cs210 13

20/08/14

LC-3 Overview: Memory and Registers

Memory
— address space: 21¢ locations (16-bit addresses)
— 65,536 memory address
— addressability: 16 bits

Registers

— temporary storage, accessed in a single machine cycle
« accessing memory generally takes longer than a single cycle

— eight general-purpose registers: Ro - R7
+ each 16 bits wide
* 4 bits to uniquely identify a register?

— other registers
« not directly addressable, but used by (and affected by) instructions
« PC (program counter), condition codes

csato "
woor [o [o [o [o[&] 5%]

wo o | on | o [% | o]

o [| o8 |] | opon

o (oo [o] o o] b]

wn o | o g s]

v oo o |] e

m [ogop

e [Cain | wn | gt

-

LC-3 Overview: Instruction Set

Opcodes
— 15 opcodes
— Operate instructions: ADD, AND, NOT
— Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
— Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
— some opcodes set/clear condition codes, based on result:
* N = negative, Z = zero, P = positive (> 0)
Data Types
— 16-bit 2’s complement integer
Addressing Modes
— How is the location of an operand specified?
— non-memory addresses: immediate, register (direct)
— memory addresses: PC-relative, indirect, base + offset

cs210 6

20/08/14

Operate Instructions

Only three operations: ADD, AND, NOT

Source and destination operands are registers
— These instructions do not reference memory.

— ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction

Will show dataflow diagram with each instruction

— illustrates when and where data moves
to accomplish the desired operation

— Watch the video http://youtu.be/yZChqRqPlul

cs210 7

NOT (Register)

unused bits
P

15 14 13 12 11 1¢ 3 7 6 5 3 2 1 0
NOT [1 0 0 1] pst | sre |1 1 1 1 1 1

Register File

Dst -«

Note: Src (source) & Dst (destination)
could be the same register.

cs210 8

ADD/AND (Register)

this zero means “register mode ”

15 14 13 12 11 10 & 7 6 5 1 3 2 1 0
ADD [0 0 0 1] Dst | sre1 [o]o o] sre2 |

15 14 13 12 11 0 9 8 6 5 4 3 2 1 (
AND [0 1 0 1] pst | srel [o]o o sre2 |
Register File

Src2

Dst <

20/08/14

ADD/AND (Immediate)

this one means ‘immediate mode ”

15 14 13 12 11 10 £ 7 [§ 5 1 3 2 1 0
ADD [0 0 0 1] Dst | sre1l [1] Tmms |

15 14 13 12 11 10 ¢ 8 [¢ 5 4 32 1 0
AND [0 1 0 1] pst | srel [1] Imms5 |

Dst <

Note: Immediate field is
sign-extended.

Instruction Reg =
cs210 2

Using Operate Instructions

*With only ADD, AND, NOT ...

— How do we subtract?
C=A-B
+ Compute ~B, the additive inverse of B:
* -B=(NOTB)+1
« C=A+(-B)=A+ (NOTB)+1
— How do we OR?
Use DeMorgan’s theorem
* C = A 0rRB=NOT(NOTA) anp (vor B))
— How do we copy from one register to another?
B =A+0 (useimmediate ADD)
— How do we initialize a register to zero?
B = X AND o (use immediate AND)
B =X AND NOT(X)

cs210 21

PC-Relative Addressing Mode

Want to specify address directly in the instruction
— LC-3 memory has 2'° (65,536) memory addresses
— Each address is 16 bits, and so is as long as an instruction!
— After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address
— Only 512 addresses are reachable with 9 bits

Solution:
— Use the 9 bits as a signed offset from the current PC address.

9 bits: -256 < offset < +255

Can form any address X, such that:
PC-256 <X <PC+ 255

Effectively we can access any part of the memory ~256 bits around the 16 bit
address in the PC

Since we can change the address in the PC we can access the entire memory

cs210 2

20/08/14

LD (PC-Relative)

15 14 13 12 11 10 9 8 6 5 4 3 2 1
ID [0 0 1 o] Dst | PCoffset9 |
PC Register File Memory
1
—— > Dt
i
2
Sext
7 TR:0]
Instruction Reg 2
MAR $
L
MDR 2

ST (PC-Relative)

15 14 13 12 11 10 9 8 6 5 4 3 2 1
ST[o 0 1 1] szrc | PCoffset9 |
pC Register File Memory
—— 1
—f—= src
i
g
Sext
1 |iRig:0)
Instruction Reg 2
MAR 3
e 5
MDR 2

20/08/14

Indirect Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.

— What about the rest of memory?

— What if we don’t want to change the value in the PC

Solution #1:

— Read address from memory location,
then load/store to that address.

First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

Watch video: http://voutu.be/cDaPPXyYbHo

LDI (Indirect)

15 14 13 12 11 10 ¢ 8 6 5 4 3 2 1 0
IDI [1 0 1 o] pst | PCoffset9
PC Register File Memory
[
= Dst

0

Sext
U TR:0]

Instruction Reg

STI (Indirect)

15 14 13 12 11 10 ¢ 8 6 5 4 3 2 1 0
STI[1 0 1 1] szc | BCoffset
PC Register File Memory
[

—f—__Src

0

Sext
U TR:0]

Instruction Reg

20/08/14

Base + Offset Addressing Mode

With PC-relative mode, can only address data
within 256 words of the instruction.
— What about the rest of memory?

Solution #2:
— Use a register to generate a full 16-bit address

4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used
as a signed offset

— Offset is sign-extended before adding to base
register

cs210 28

LDR (Base+Offset)

15 14 13 12 11 10 ¢ 8 6 5 4 3 2 1 0
IDR [0 1 1 o] Dst | Base | offsets |
Register File Memory

—— Dst

Sext —

IR[5:0]

Instruction Reg 2

STR (Base+Offset)

13 12 11 1C 2 1

15 14 < 8 [§ 5 4 3 0
STR [0 1 1 1] src | Base | offsets |

Register File Memory

——__Src

Sext —

IR[5:0]

Instruction Reg 2

10

Load Effective Address

Computes address like PC-relative (PC plus signed
offset) and stores the result into a register.

Note: The address is stored in the register,
not the contents of the memory location

20-Aug-14 cs210 3t

20/08/14

LEA (Immediate)

15 14 13 12 11 1¢C 4 3 2 1

LEA[L 1 1 o] pst | Pcoffsets |

pC Register File
—— 1 N —
1
Sext
1 |IR[8:0]
Instruction Reg 5

cs210 32

Control Instructions

Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch
— branch is taken if a specified condition is true
« signed offset is added to PC to yield new PC
— else, the branch is not taken
« PCis not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
— always changes the PC
— watch the video http://youtu.be/GF1z7MEa-pk

TRAP
— changes PC to the address of an OS “service routine”
— routine will return control to the next instruction (after
TRAP)

cs210 33

11

Condition Codes

LC-3 has three condition code bits:
N -- negative
Z -- zero
P -- positive (greater than zero)

Set by any instruction that writes a value to a
register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
—Based on the last instruction that altered a register

cs210 34

20/08/14

Branch Instruction

Branch specifies one or more condition codes.
If the set bit is specified, the branch is taken.

— PC-relative addressing:
target address is made by adding signed offset (IR[8:0])
to current PC.

— Note: PC has already been incremented by FETCH stage.
— Note: Target must be within 256 words of BR instruction.

If the branch is not taken, =~
the next sequential instruction is executed.

cs210 35

BR (PC-Relative)

1 14 13 12 11 10) 3 € 5 4 3 2 1 (
BR [0 0 0 o[n[z[p] PCoffset9 |

3

€ PCMUX

cs210 36

12

Control Structures: Sequence

begin
statement-1

statement-n
end

Statement-1

Statement-n

20/08/14

Control Structures: Selection

if condition then
consequent sequence
else
alternative sequence

Boolean
expressio

True

False
Alternative

Control Structures

while condition do
loop body sequence

: Loops (Entry Control)

Boolean
expressiol

True

Loop body

False

13

Control Structures: Loops (Exit Control)

do
loop body sequence

Loop bod!
until condition
False

Boolean
expressiol

20/08/14

LC-3 Control Instructions

* Conditional branch (BR)

* Absolute branch (JMP)

* Procedure call (JSR, JSRR, RET, RTI)

* System call (TRAP)

Condition Codes

* 3 single-bit registers named N, Z, and P

* Exactly one will be set at all times
N Z P

* Automatically set by any instructions that
writes data to a register (ADD, AND, NOT, LD,
LDR, LDI, LEA)

14

Example: Subtract 1 from R3

add R3, R3, -1 When R3 =0

N

WhenR3>0
Circuitry sets condition codes after
z P

add executes N

N Z P

20/08/14

Conditional Branch (BR)

* Alters a sequence of instructions by changing
the PC

* Branch is taken if the condition is true

* Signed offset is added to PC if condition is
true; otherwise, PC not changed

Conditional Branch

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘OOOO’N‘Z‘P‘ PC offset ‘

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘0000‘0’1‘0‘011011001‘
N Z P

BR x0D9

Offset is sign-extended and added to the incremented PC

Destination must be no more than +256 or -255 from the BR itself

15

Data Path for BR

€ PCMUX

20/08/14

Example: An Unconditional Branch

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘OOOO’N‘Z‘P‘ PC offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘0000‘1’1‘1‘011011001‘

BR N Z P x0D9

At least one condition code is guaranteed to match the codes in this

instruction

Jump Instruction (JMP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘1100’3559 ‘000000000‘

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘1100‘010‘000000000‘

Contents of the base

Register File

register are copied to PC

the PC [

= Base

0
Can go anywhere in
memory!

16

Trap Instruction (TRAP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘1 111 ‘u 000 ‘ Trap vector (8 bits) ‘

OS service routine
Operation coded in trap vector
RO used for input and output

After completion, PC is set to instruction following the TRAP

20/08/14

Trap Instruction (TRAP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘1 111 ‘u 000 ‘ Trap vector (8 bits) ‘

%20 (GETC) - waits for the keyboard interrupt and reads a single character and
converts the key value into an ASCII character. The character is not echoed to
the console screen, it is simply read and stored into a register

x21 (OUT) - writes the character currently in RO onto the console display
X22 (PUTS) - writes an array of characters or string to the console (the data is
converted into ASCII before printing to the screen). The first character is stored

in RO continues down the array until until the program finds data reading 0x0000

X23 (IN) - waits for character input, the character is echoed back to the screen
and is also stored into RO as an ASCII value

Trap Instruction (TRAP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘1 111 ‘u 000 ‘ Trap vector (8 bits) ‘

X24 (PUTSP) - recording input strings, each register will hold a pair of characters
and the address of the first character is stored in RO. The user writes into the
console and the program stores the characters into an array. Writing terminates
with the occurrence of 0x0000

x25 (HALT) - used for ending programs, it doesn’t terminate the program, it
simply stops execution by the use of a forever loop

17

