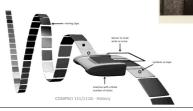
Computer Science 21

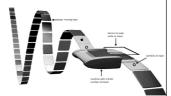

Computer Systems 1

Chapter 4: The von Neumann Model

Credits: "McGraw-Hill" slides prepared by Gregory T Burd, North Carolina State University

The Turing Machine

- Alan Turing, 1936
- A simple (hypothetical) computing machine
- Could solve any problem for which a program could be written
- The basis of all modern computers


The Universal Machine

- An algorithm describes how to solve an individual decision problem
- At this time computers were people
- Turing imagined a hypothetical factory filled with floor upon floor, rows upon rows of hundreds upon hundreds of computers
- each using an algorithm to solve a particular decision problem
- Such a factory could in theory solve the decision problem for all conceivable problems
- This was the *universal machine*

Watch the video: http://vimeo.com/33559758

A Turing Machine

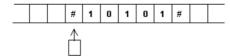
- A Turing Machine consists of:
 - an infinite input/output tape divided into cells containing symbols
 - a read / write head
 - an internal state
 - a set of rules

A Turing Machine - example

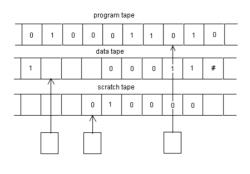
- Is a string a palindrome?
 - _ _ A B B A _
- Step right until you detect 1st character
 - _ _ A B B A
- Erase the "A" and apply a rule looking for an "A" at the string's end
- Step right until you detect blank character then go back one cell to the left is this an "A"?

A Turing Machine - example

• Step right until you detect blank character then go back one cell to the left – is this an "A"?



- If NOT(A) then STOP it's not a palindrome
- Else erase A step left to first character of string


 Repeat steps above until either all characters erased (it's a palindrome) or program STOPs (it's not a palindrome

A Turing Machine - example

- q0 start state, looking for the first input character
- q1 remembering a 0, looking for an end marker
- q2 remembering a 1, looking for an end marker
- $\ensuremath{\mathsf{q3}}$ remembering a 0 having found an end marker, looking for a match
- q4 remembering a 1 having found an end marker, looking for a match
- q5 returning to the front of the string after a successful match
- q6 mismatch detected, final rejection state
- q7 if input character at tape head is #, accept, else same as start state

A Universal Turing Machine

Colossus

- 1943 First programmable digital computer -Colossus
- 10 machines built for Bletchley Park, England to crack German High Command's Lorenz code
- Designed by Tommy Flowers
- 1,500 valves (vacuum tubes)
- TOP SECRET until 1970's
- ENIAC in 1945 was publicised as the "first computer"

COMPSCI 111/111G - Histor

machine

The Stored Program Computer

The Stored Program Computer

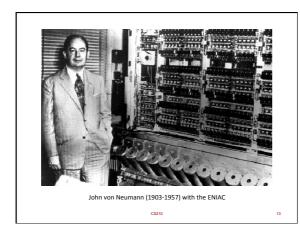
1945: ENIAC

- Hard-wired program settings of dials and switches.

 Presper Eckert and John Mauchly first general-purpose electronic

computer. (or was it John V. Atanasoff in 1942?) (or was it Konrad Zuse in 1941?)

- •1944: Beginnings of EDSAC
 - Maurice Wilkes, inspired by conversations with Eckert & Mauchly
 Among other improvements, includes program stored in memory
- •1944: Beginnings of EDVAC (working 1949)


The Stored Program Computer (continued)

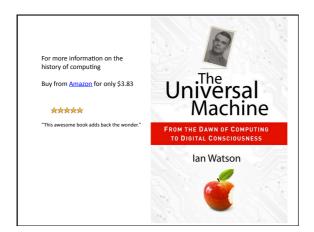
1945: John von Neumann

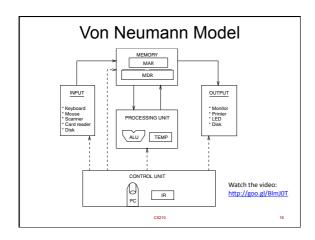
- Wrote a report called, First Draft of a Report on EDVAC, on the stored program concept,

The basic structure proposed in the draft became known as the "von Neumann machine" (or model)

- a **memory**, containing instructions and data
- a **processing unit**, for performing arithmetic and logical operations
- $\boldsymbol{\mathsf{-}}$ a $\boldsymbol{\mathsf{control}}$ $\boldsymbol{\mathsf{unit}},$ for interpreting instructions
- input/output (I/O) devices


Konrad Zuse, 1910-1995




Sir Maurice Vincent Wilkes/Konrad Zuse

Konrad Zuse (1910-1995) and Maurice Wilkes (1913-2011)

