Finite State Machine

A description of a system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each external output value

Often described by a state diagram. \qquad

- Inputs trigger state transitions.

Outputs are associated with each state (or with each transition) \qquad
cs210 \qquad

Implementing a Finite State Machine

Combinational logic

- Determine outputs and next state

Storage elements

- Maintain state representation \qquad

${ }^{\text {Cs210 }}$ \qquad

Storage: Master-Slave Flip flop

\qquad
A pair of gated D-latches, \qquad to isolate next state from current state.

Storage: Master-Slave Flip flop

Master-slave edge triggered D flip-flop

\qquad
\qquad
\qquad
\qquad
\qquad

Cs210

Flip-Flops

- Many types
- Look at
hittp://en.wikipedia.org/wiki/flip-flop_(electronics)

Flip-flop schematics from the Eccles and Jordan patent filed 1918

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Storage

\qquad
\qquad
-Each master-slave flipflop stores one state bit.
-The number of storage elements (flipflops) needed is determined by the number of states \qquad
(and the representation of each state).

-Examples:

- Sequential lock
- Four states - two bits
- Basketball scoreboard
- 7 bits for each score, 5 bits for minutes, 6 bits for seconds, 1 bit for possession arrow, 1 bit for half,.

Complete Example

\qquad
-A blinking traffic sign

- No lights on
- $1 \& 2$ on
$-1,2,3, \& 4$ on
$-1,2,3,4, \& 5$ on
- (repeat as long as switch is turned on)

\qquad
\qquad
\qquad
\qquad
\qquad
cs210 \qquad

\qquad

Traffic Sign Truth Tables

Outputs (depend only on state: $\mathrm{S}_{1} \mathrm{~S}_{0}$)

Next State: $\mathrm{S}_{1}{ }^{\prime} \mathrm{S}_{0}{ }^{\prime}$

 (depend on state and input)cs210

Whenever $\mathrm{On}_{n}=0$ (false), next state is 00 (off)
$S_{1} \& S_{0}$ are irrelevant

$\& S_{0}$ are irrelevant

Of course our traffic sign controller has
Implementing a generic controller in hardware that could be controlled by software would give us more flexibility but would be more complicated.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

From Logic to Data Path

\qquad

The data path of a computer is all the logic used to
\qquad process information.

- See the data path of the LC-3 on next slide. \qquad
-Combinational Logic
- Decoders - convert S into control signals
- Multiplexers - select inputs and outputs
- ALU (Arithmetic and Logic Unit) - operations on data - Sequential Logic
- State machine - coordinate control signals and data movement
- Registers and latches - storage elements
cs210

