
\qquad
\qquad
\qquad
Sequential Logic \& \qquad
\qquad
\qquad
redits: Slides adapted from Gregory T. Byrd, North Carolina State University \qquad

Gated D-Latch
\qquad
\qquad
Two inputs: D (data) and WE (write enable)

- when WE $=1$, latch is set to value of D
$\cdot \mathrm{S}=\mathrm{D}, \mathrm{R}=\mathrm{NOT}(\mathrm{D})$
- when $\mathrm{WE}=0$, latch holds previous value \qquad
$\cdot \mathrm{S}=\mathrm{R}=0$

cs210

Gated D-Latch

\qquad
Two inputs: D (data) and WE (write enable) \qquad

- when $\mathrm{WE}=1$, latch is set to value of D
- $\mathrm{S}=\mathrm{D}, \mathrm{R}=\mathrm{NOT}(\mathrm{D})$
- when $W E=0$, latch holds previous value
- $\mathrm{S}=\mathrm{R}=0$

Symbol for a Gated D-Latch
cs210

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Representing Multi-bit Values

Number bits from right (0) to left (n-1)

- a convention

Use brackets to denote range:
$\mathbf{D}[\mathbf{l}: \mathbf{r}]$ denotes bit \mathbf{l} to bit \mathbf{r}, from left to right

-May also see $\mathrm{A}<\mathbf{1 4}: 9>$,
especially in hardware block diagrams.

More Memory Details

This is a simplification

- fewer transistors, much more dense, relies on electrical properties
-But the logical structure is very similar:
- address decoder
- select register
- word write enable

Two basic kinds of RAM (Random Access Memory)

- Static RAM (SRAM)
- fast, maintains data as long as power applied
- Dynamic RAM (DRAM)
- slower but denser, bit storage decays - must be periodically refreshed

Also, non-volatile memories: ROM, PROM, flash, .

State Machine

\qquad
Another type of sequential circuit \qquad

- Combines combinational logic with storage
- "Remembers" state, and changes output (and state)
based on inputs and current state \qquad

Combinational vs. Sequential

\qquad
-Two types of "combination" locks

State

The state of a system is a snapshot of all the relevant elements of the system at the moment the snapshot is taken.
\qquad
-Examples:

- The state of a tic-tac-toe (Noughts \& Crosses) game can be represented by the placement of X's and O's on the board.
- The state of a cricket game can be represented by the scoreboard
- Number of runs \& wickets, overs remaining, etc.

State of a Turnstile

\qquad
The turnstile has 2 states - locked and unlocked The turnstile has 2 inputs - putting in a coin (coin) - pushing the bar (push)

Current State	Input	Next State	Output
	coin	Unlocked	Release turnstile so customer can push through
	push	Locked	None
Unlocked	coin	Unlocked	None
	push	Locked	When customer has pushed through lock turnstile

State of a Turnstile

The turnstile has 2 states

- locked and unlocked The turnstile has 2 inputs - putting in a coin (coin) - pushing the bar (push)

The Ultimate Machine

- Claude Shannon was a bit of an inventor
- motorised pogo stick
- the Ultimate Machine

