Computer Science 210 s1 Computer Systems 1
Lecture Notes
Chapter 3
Digital Logic Structures

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transistor: Building Block of Computers

- Microprocessors contain millions of transistors \qquad
IBM PowerPC 750FX (2002): 38 million
IBM/Apple PowerPC G5 (2003): 58 million
Intel Core ${ }^{\text {™ }}$ P Processor (2008): 410 million
Intel@ Xeon Phi" coprocessor 5110 P (2012): 5 billion \qquad
-Logically, each transistor acts as a switch
-Combined to implement logic functions \qquad
- AND, OR, NOT
-Combined to build higher-level structures - Adder, multiplexer, decoder, register, ..
-Combined to build processor
- LC-3

\qquad
\qquad
\qquad

Simple Switch Circuit

Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage.
cs210

n-type MOS Transistor

-MOS = Metal Oxide Semiconductor

- two types: n-type and p-type
-n-type
- when Gate has positive voltage, short circuit between \#1 and \#2 (switch closed)
- when Gate has zero voltage, open circuit between \#1 and \#2 (switch open)

Terminal \#2 must be connected to GND (OV).

p-type MOS Transistor

- p -type is complementary to n -type \qquad
- when Gate has positive voltage, open circuit between \#1 and \#2 (switch open)
- when Gate has zero voltage, short circuit between \#1 and \#2 (switch closed)

\qquad
\qquad
\qquad
\qquad
Terminal \#1 must be
connected to +2.9 V

Logic Gates

Use switch behavior of MOS transistors to implement logical functions: AND, OR, NOT.

Digital symbols:
 - recall that we assign a range of analog voltages to each digital (logic) symbol

\qquad
\qquad
\qquad
\qquad
\qquad

- assignment of voltage ranges depends on electrical properties of transistors being used
- typical values for " 1 ": $+5 \mathrm{~V},+3.3 \mathrm{~V},+2.9 \mathrm{~V}$ \qquad
- from now on we'll use +2.9 V

CMOS Circuit

\qquad
Complementary MOS \qquad
Uses both n-type and p-type MOS transistors

- p-type
- Attached to + voltage
- n-type
\qquad
- Attached to GND

For all inputs, make sure that output is either connected to GND or to + but not both!
\qquad
\qquad
cs210 \qquad

Inverter (NOT Gate)

cs210
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
NAND Gate (AND-NOT)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic Logic Gates \qquad

\qquad
NOT \qquad

OR

cs20

More than 2 Inputs?

\qquad
AND/OR can take any number of inputs.

- AND $=1$ if all inputs are 1 .
\qquad
$-\mathrm{OR}=1$ if any input is 1 .
- Similar for NAND/NOR \qquad
Can implement with multiple two-input gates, or with single CMOS circuit. \qquad

\qquad
\qquad
\qquad

DeMorgan's Law

Converting AND to OR (with some help from NOT)
Consider the following gate: \qquad
$B-\int-\overline{\bar{A}} \cdot \bar{B}$
Shows that you can write an expression like "not (A or B)" as "(not A) and $(\operatorname{not} B)$ ". Similarly, "not (A or B)" can be written as "(not A) and (not B)"

A	B	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$	$\overline{\bar{A} \cdot \bar{B}}$
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

Watch this video
http://youtu.be/tKnS3s8fOu4
Therefore, you can implement
any truth table using only
Cs210
NAND (or NOR) gate

Summary

MOS transistors are used as switches to implement logic functions.

- n-type: connect to GND, turn on (with 1) to pull down to o
- p-type: connect to +2.9 V , turn on (with 0) to pull up to 1

Basic gates: NOT, NOR, NAND

- Logic functions are usually expressed with AND, OR, and - Logic

DeMorgan's Law

- Convert AND to OR (and vice versa)
by inverting inputs and output
- Means we may only need to use NOT and AND to implement any logic circuit

S210

