Computer Science 210

Computer Systems 1
Lecture Notes

Lecture 5,

Representation of Fractions
& Floating Point Numbers

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University

Text: ASCI|I Characters

« ASCII: Maps 128 characters to 7-bit code.
— both printable and non-printable (ESC, DEL, ...) characters
— “ASClIlIbetical” order

2-2

00 nul{10 dle|20 sp|30 O (40 @ |50 P |60 70 p
01 soh[11 dc1{21 ! |31 1 ({41 A |51 Q|61 a |71 ¢
02 stx|12 dc2{22 " (32 2 |42 B |52 R |62 b |72 r
03 etx|[13 dc3|23 # |33 3 (43 C |53 S |63 c |73 s
04 eot|14 dc4|24 $ |34 4 |44 D (54 T |64 d |74
05 enqg[15 nak|25 % |35 5 (45 E |55 U |65 e |75 u
06 ack|[16 syn|26 & |36 6 (46 F |56 V |66 f |76 v
07 bel|17 etb|27 ' |37 7 (47 G |57 W |67 g |77 w
08 bs |18 can|28 (|38 8 (48 H |58 X |68 h |78 x
09 ht[19 em|[29) |39 9 (49 | |59 Y [69 i |79 vy
Oa nl|1a subj|2a * |3a : |4a J |%a Z|6a | |7a z
Ob vi|[1b esc|2b + |3b ; {4b K |5b [[6b Kk |7b {
Oc np|1c fs|2c , |3c < |4c L |5¢c \ |6¢c | [7c |
Od cr|1d gs|2d - |3d ={4d M |5d] |6d m |7d }
Oe sofl1e rs|2¢e . |3e > (4e N |5e " |[6e n |7Te ~
Of si|1f us|2f / |[3f 7 |4f O |5 _ |6f o |7f del

2-3

Interesting Properties of ASCII Code

What is relationship between a decimal digit (‘0’, ‘1’, ...)
and its ASCII code?

What is the difference between an upper-case letter
(‘A’, ‘B’, ...) and its lower-case equivalent (‘a’, ‘b’, ...)?

Given two ASCII characters, how do we tell which comes
first in alphabetical order?

Is 128 characters enough?
(http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

2-4

Representing More Characters

* Unicode — International standard
— More than 110,000 characters defined
— 8-, 16-, and 32-bit codes (UTF-8, UTF-16 & UTF-32)
— “ASCII” is a subset of Unicode

1-5

Today: Representation of non-Integers

— Text, strings
— Fractions
— Scientific notation/Floating point representation

2-6

Other Data Types

» Text strings

— sequence of characters, terminated with NULL (0)
— typically, no hardware support
* Image
— array of pixels
« monochrome: one bit (1/0 = black/white)

* color: red, green, blue (RGB) components (e.g., 8 bits each)
« other properties: transparency

— hardware support:

* typically none, in general-purpose processors
« MMX -- multiple 8-bit operations on 32- or 64-bit word

* Sound
— sequence of fixed-point numbers

2-7

LC-3 Data Types

* Some data types are supported directly by the instruction
set architecture.

« For LC-3, there is only one hardware-supported data
type:

— 16-bit 2’s complement signed integer
— Operations: ADD, AND, NOT

« Other data types are supported by interpreting 16-bit
values as logical, text, fixed-point, etc., in the software

that we write.

Fractions: Fixed-Point

« How can we represent fractions?

— Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

— 2" s comp addition and subtraction still work
« only if binary points are aligned

21=0.5
22=0.25
17 23=0.125
00101000. 101 (40 625) Remember this is in
+ 11111110.110 (-1.25) € 2's Complement
00100111.011 (39.375)

No new operations -- same as integer arithmetic

Video: how to convert decimal fractions to binary http://youtu.be/Y4Q9PnjKhac

2-8

1-9

Scientific Notation

« We can only represent 232 (~ 4 billion) or maybe 264 (~ 18
quintillion) or even 2128 (~ 3.4 x 1038 or 340 decillion)
unique values, but there are

 Infinitely many numbers between any two integers
 Infinitely many numbers between any two real numbers!

* We can only represent a (small) finite number of values.

— These values are not spread uniformly along number line
— Infinity of numbers between zero and one

Video on Scientific Notation http://voutu.be/QtN713nlkhs

Scientific Notation

975.25 == 9. 7525 x 102
« Conventional (decimal) notation:
* + mantissa x 10¢xponent
* 1< mantissa < 10
« exponent is signed integer

* Binary notation:
e + mantissa x 2¢xponent
* 1< mantissa < 2
 exponent is signed integer

Significant Digits

*Accuracy of measurement leads to notion of
Significant Digits
— For most purposes, we don’t need high precision

— Accuracy of calculations is generally limited by least
precise numbers

— Can represent numbers with a few significant digits

* 6.0221415 * 1023 Avogadro’s Number (approximately)
» 299,792,458 meters/sec -- Speed of Light (exactly!)

— By definition, a meter is the distance light travels through a vacuum
in exactly 1/299792458 seconds

* 3.141592..

— Computable to arbitrary accuracy, but
— More digits probably won’t improve result

Representation of Floating Point
Numbers (Reals)

As with integers and chars, we ask

Which reals? There is an infinite number between two
adjacent integers.

Which bit patterns for selected reals?

Answer for both strongly related to scientific notation.

2-13

Very Large and Very Small: Floating-Point

Large values: 6.023 x 1023 -- requires 79 bits

Small values: 6.626 x 10734 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2F

Need to represent F (fraction), E (exponent), and sign.
IEEE 754 Floating-Point Standard (32-bits):

1, 8b 23b

L9]
@ N

v

S | Exponent | Fraction

Exponent uses “biased” representation (no sign bit)
Fraction has implicit 1

Video converting decimal to floating-point binary representation
http://youtu.be/iQFG7sAa7i4

Floating Point Example

« Single-precision IEEE floating point number:

1 01111110 10000000000000000000000
T !

sign exponent fraction

— Sign is 1 — number is negative.
— Exponent field is 01111110 = 126 (decimal).
— Fraction is 0.100000000000... = 0.5 (decimal).

e Value = -1.5 x 2(126-127) = _1 5 x 2'1 = -0.75

2-14

2-15

IEEE Floating-Point Standard (32-bit)

b, 8b 23b

S 6L
L)

v

S | Exponent Fraction

(-=1)° x 1 fraction x 28XPonent=127 "4 _ exponent < 254

(—1)S x 0 fraction x 271%°, exponent =0

N
N

Example: FP Representation for 40.625,_,

1b_ 8b 23b

L9]
@ N

v

S | Exponent Fraction

From earlier slide 40.625,_ = 00101000.101

ten two

2. Put the binary rep. into normal form (make it look like

scientific notation): +101000.101 x 2° = +1.01000101 x 2°

5 is the true exponent; with bias: 5+ 127 =132,
= 10000100

two

Mantissa/Fraction occupies 23 bits:
(1.) 010 0010 1000 0000 0000 0000

b 8b 23b

S8 S
L &

0| 1000 0100{ 010 0010 1000 0000 0000 0000

2-17

Floating-Point Operations

Will regular 2’s complement arithmetic
work for

Floating Point numbers?

* (Hint: In decimal, how do we compute 3.07 x 102 + 9.11 X 108 ?)

Floating-Point Arithmetic

* Floating
importantly, floating point operations are

2-18

inherent

» Some numbers (e.g. “repeating decima

ooint operations may overflow but, more

V inexact

III

) cannot

be represented exactly.
» Introduces the “Rounding” problem

* Every inexact result creates a difference between
the mathematical value and the computed value.

* Errors accumulate, often benignly by cancelling

out.

* Worst-

case accumulation of error can be

enormaous.

