Computer Science 210

Computer Systems 1

Lecture Notes

Lecture 4

Arithmetic & Other Operations

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University

7/29/13

Unsigned Integers

* Non-positional notation

— could represent a number (“5”) with a string of ones (“11111”)
— problems?

* Weighted positional notation

— like decimal numbers: “329”
— “3”is worth 300, because of its position, while “9” is only worth 9

most \ v least
3 29 significant 101 significant
/1N VAN RN
102 10 10° 22 2t 20
[3x00+2x10+9x1=329 | [pa+o+ba=s5 |

Unsigned Integers (cont.)

* An n-bit unsigned integer represents any of 2" (integer)
values:
from o to 2™-1.

N
N
N
N
=}

Value

B Bk Rk B OO OO
kP OO R L OO
» O Rk O R O R O
N oo W N R O

Unsigned Binary Arithmetic
+ Base-2 addition — just like base-10!
— add from right to left, propagating carry

A YN

10010 10010 1111
+__1001 +_1011 + 1
11011 11101 10000

Subtraction, multiplication, division,...

7/29/13

Signed Integers

» With n bits, we can distinguish 2" unique values
— assign about half to positive integers (1 through 271)
and about half to negative (-27* through -1)
— that leaves two values: one for 0, and one extra

* Positive integers
— just like unsigned, but zero in most significant (MS) bit
00101=5

» Negative integers

— Sign-Magnitude (or Signed-Magnitude) — set MS bit to show
negative,
other bits are the same as unsigned
10101 = -5

— One’s complement — flip every bit to represent negative
11010 = -5

— In either case, MS bit indicates sign: o=positive, 1=negative

Two’s Complement

* Problems with sign-magnitude and 1’s complement
— two representations of zero (+0 and —0)
— arithmetic circuits are complex
« How to add two sign-magnitude numbers?
- eg., try2+(-3)
» How to add two one’s complement numbers?
- eg.,try4+(-3)
» Two’s complement representation developed to make
circuits easy for arithmetic.

— for each positive number (X), assign value to its negative (-X),
such that X + (-X) = o with “normal” addition, ignoring carry out

00101 (5) 01001 (9)
+_11011 (-5) +_10111 (-9)
00000 (0) (1)00000 (0)

Two’s Complement Representation

« If number is positive or zero,

— normal binary representation, zeroes in upper bit(s)
« If number is negative,

— start with positive number

— flip every bit (i.e., take the one’s complement)

— then add one
00101 (5) 01001 (9)
11010 (1’s comp) 10110 (1's comp)
+ 1 + 1
11011 (-5) 10111 (-9)

7/29/13

Two’s Complement Signed Integers

* MS bit is sign bit — it has weight —2m-.
» Range of an n-bit number: -2 through 2m* — 1.
— The most negative number (-2™) has no positive counterpart.

23 22 1 0 23 22 21 0
0O 0 0 o0 0 1 0 0 O -8
o 0 0 1 1 1 0 0 1 -7
o 0 1 o 2 1 0 1 0 -6
o 0 1 1 3 1 0 1 1 -5
o 1 0 o0 4 1 1 0 o0 -4
o 1 0 1 5 1 1 0 1 -3
o 1 1 o 6 1 1 1 0 -2
o 1 1 1 7 11 1 1 -1

Converting Binary (2’s C) to Decimal

1. If leading bit is zero (a positive
number) just convert as normal

X = 01101000
= 26425423
= 64+32+8

X = 104

Assuming 8-bit 2’s complement numbers.

Converting Binary (2’s C) to Decimal

* If the number is negative (MS bitis a 1)
* Same as before EXCEPT the MS bit is negative

X= 11100110
= =27+26+25+22+21
= -128+64+32+4+2

X=-26

Watch a video http://www.youtube.com/watch?v=NUASXigazc8

Assuming 8-bit 2’s complement numbers.
210

7/29/13

Operations: Arithmetic and Logical

+ Recall: adata type includes representation and
operations.

* We now have a good representation for signed integers,

so let’s look at some arithmetic operations:
— Addition
— Subtraction
— Sign Extension
« We'll also look at overflow conditions for addition.
Multiplication, division, etc., can be built from these
basic operations.
Logical operations are also useful:
— AND
- OR
- NOT

Addition

+ Aswe've discussed, 2’s comp addition is just
binary addition.

— assume all integers have the same number of bits
— ignore carry out

— for now, assume that sum fits in n-bit 2’s comp.
representation

01101000 (104) 11110110 (-10)
+__ 11110000 (16) +_ 11110111 (-9)
01011000 (83) (1)11101101 -

Assuming 8-bit 2’s complement numbers.

Subtraction

* Negate subtrahend* (2nd no.) and add
*10—-4=6

c10+(-4)=6

» We can do all subtraction using addition!!!

* minuend (c) - subtrahend (b) = difference (a)

* Our computer will only need an adder circuit
* Much simpler

+ First let’s look at why we don’t want to subtract
like we do with decimal numbers
* http://www.youtube.com/watch?v=iBY3iPYyzUY

7/29/13

Subtraction

* 104—-16="7
* 104 + (-16) =?

01101000 (104)
+__ 11110000 (-16)
01011000 (ss)

Subtraction

* (-10)—(-9)=?
e (-10)+9="7?

11110110 (-10)
+_00001001 (9)
11111111 (1)

Overflow
+ If operands are too big, their sum cannot be
represented as an n-bit 2’s comp number
* 5 bits can represent 25 or 32 unsigned integers
+ Or o to 15 positive and -1 to -16 as signed integers

unsigned signed

01110 (14) 01110 (14)
+_01000 (3) +_01000 (8)

10110 (22) 10110 (-10)

» We have overflow in signed binary if:
— signs of both operands are the same, and
— sign of sum is different.

+ Another test -- easy for hardware:
— carry into MS bit does not equal carry out

7/29/13

Overflow
+ If operands are too big, their sum cannot be
represented as an n-bit 2’s comp number
* 5 bits can represent 25 or 32 unsigned integers
* Or o to 15 positive and -1 to -16 as signed integers
signed
10111 (-8)
+_10111 (-9)
01110 (+14)

We have overflow if:
— signs of both operands are the same, and
— sign of sum is different.

Easy for hardware to test

Overflow

« Example: 4-bit signed
— Two’s complement - 8 <=x <=7

— Examples: . P E
6+7=13 1010 «— -6 | (outside the range)
(outside the range) -7
+1001«—
+om <7 10000 carries
01100 carries 10011(4-bit)= 0011

01101 (4-bit) => 1101
Answer = -3 Invalid answer
2
1110 om-2l22251] 0010 «3

+0011 “—

0110 «— 6

0100 carries

]
— Al =5
10001 (4-bit)=0001 0101

Addition/Subtraction with 2’'s Complement

+ Two’s complement representation allows addition and
subtraction from a single simple adder.

A

Circuit of
Figure 315

Circuit of
Figure 3.15

Circuit of
Figure 3.15

Circuit of
Figure 3.15

el

Figure 3.16 A circuit for adding two 4-bit binary numbers

+ Circuittoadd:S=A+B
+ To subtract A — B : invert B and enable carry in

7/29/13

Logical Operations

* Operations on logical TRUE or FALSE

— two states -- takes one bit to represent:
TRUE=1, FALSE=0

A B| AanB A B| AorB A‘ NOT A
00 0 00 0 0 1
01 0 01 1 1 0
10 0 10 1

11 1 11 1

 View n-bit number as a collection of n logical values
— operation applied to each bit independently

Examples of Logical Operations

11000101
* AND ol for clearing bit AND__00001111
— use: Or clearin, 1S
* AND with zero :go 00000101
« AND with one = no change
« OR 11000101
— useful for setting bits OR 00001111
* OR with zero = no change T a1AM1111
* OR with one = 1 11001111
« NOT

. NOT__11000101
— unary operation, X
one argument flips every bit 00111010

Sign Extension

» Sometimes we want to convert a small number
of bits into a larger number of bits

If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not-4)
* Instead,

spropagate the MS bit (the sign bit):
4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)

7/29/13

Hexadecimal Notation
(not a representation)

« Itis often convenient to write binary (base-2) numbers
using hexadecimal (base-16) notation instead.
— fewer digits -- four bits per hex digit
— less error prone -- easy to corrupt long string of 1’s and 0’s

Binary Hex Decimal Binary Hex Decimal
0000 o o 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 1
0100 4 4 1100 c 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Converting from Binary Notation to Hexadecimal Notation

« Every four bits is a hex digit.
— start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111

e rrll

3 A 8 F 4 D 7

This is not a new machine representation,
just a convenient way to write the number.

This video shows you how to convert binary to hex
http://www.youtube.com/watch?v=W _NpD248CdE
(with binary to octal thrown in)

Representing Text

American Standard Code for Information
Interchange (ASCII)

— Developed from telegraph codes, alternative to
IBM’s Extended Binary Coded Decimal Interchange
Code (EBCDIC) in 1960s

— Printable and non-printable (ESC, DEL, ...)
characters (127)

— Limited set of characters — many character
missing, especially language-specific

— Many national “standards” developed

7/29/13

Text: ASCII Characters

« ASCII: Maps 128 characters to 7-bit code.

— both printable and non-printable (ESC, DEL, ...) characters
— “ASClIbetical” order

00 nul{10 dle|20 sp|30 O (40 @ |50 P |60 " |70 p
01 soh| 11 dc1|21 ! |31 1 (41 A |51 Q|61 a |71 g
02 six|12 dc2|22 " |32 2|42 B |52 R|62 b |72 r
03 etx|13 dc3|23 # |33 3|43 C |53 S |63 c |73 s
04 eot|14 dc4|24 $ |34 4 |44 D |54 T |64 d |74 t
05 enqg| 15 nak|25 % |35 5|45 E |55 U |65 e |75 u
06 ack| 16 syn|26 & |36 6 (46 F |56 V |66 f |76 v
07 bel|17 etb|27 ' |37 7 |47 G |57 W|67 g |77 w
08 bs|18 can|28 (|38 8 |48 H |58 X |68 h |78 x
09 ht|19 em|29) |39 9 (49 | |59 Y |69 i |79 vy
Oa nl|1a subj2a * |3a 4a J|5a Z|6a | |7a z
Ob vi|1b esc/2b + |3b ; [4b K |Bb [[6b k |7b {
Oc np|1c fs|2¢c , |3c < |4c L |5¢c \|6c | |7c |
0d cr|1d gs|2d - |3d = |4d M |5d] |[6d m|7d }
Oe so|1e rs|2e 3e >|4e N |5e " |6e n [7e ~
Oof si|1f us|2f / |3f 2 [4f O|5f _ [6f o |7f del

