Computer Science 210 Computer Systems 1

Lecture Notes

Lecture 4

Arithmetic & Other Operations

Unsigned Integers

- Non-positional notation

 could represent a number ("5") with a string of ones ("1111")

 problems?
- · Weighted positional notation

 - like decimal numbers: "329"
 "3" is worth 300, because of its position, while "9" is only worth 9

Unsigned Integers (cont.)

- An n-bit unsigned integer represents any of 2^n (integer) from 0 to 2^{n} -1.

2 ²	21	20	Value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Arithmetic

- Base-2 addition just like base-10!
 - add from right to left, propagating carry

Subtraction, multiplication, division,...

Signed Integers

- With n bits, we can distinguish $\mathbf{2}^n$ unique values
 - assign about half to positive integers (1 through 2ⁿ⁻¹) and about half to negative (-2ⁿ⁻¹ through -1)
 - that leaves two values: one for o, and one extra
- · Positive integers
 - $-\,$ just like unsigned, but zero in $most\,significant\,(MS)$ bit ${\color{red}00101}=5$
- Negative integers
 - $\,-\,$ Sign-Magnitude (or Signed-Magnitude) set MS bit to show negative, other bits are the same as unsigned 10101 = -5

- One's complement flip every bit to represent negative
- $-\,$ In either case, MS bit indicates sign: o=positive, 1=negative

Two's Complement

- Problems with sign-magnitude and 1's complement
 - two representations of zero (+o and -o)
 - arithmetic circuits are complex
- arithmetic circuits are complex
 How to add two sign-magnitude numbers?

 e.g., try 2 + (-3)

 How to add two one's complement numbers?

 e.g., try 4 + (-3)

 Two's complement representation developed to make circuits easy for arithmetic.
 for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

	00101	(5)	01001	(9)
+_	11011	(-5)	+ <u>10111</u>	(-9)
	00000	(0)	(1)00000	(0)

2

Two's Complement Representation

- If number is positive or zero,
- normal binary representation, zeroes in upper bit(s)
- · If number is negative,
 - start with positive number
 - flip every bit (i.e., take the one's complement)
 - then add one

Two's Complement Signed Integers

- MS bit is sign bit it has weight -2^{n-1} .
- Range of an *n*-bit number: -2^{n-1} through $2^{n-1} 1$.
 - The most negative number (-2^{n-1}) has no positive counterpart.

-2 ³	2 ²	2^1	20		-2 ³	2 ²	2^1	20	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Converting Binary (2's C) to Decimal

1. If leading bit is zero (a positive number) just convert as normal

Assuming 8-bit 2's complement numbers.

2-9

Converting Binary (2's C) to Decimal

- If the number is negative (MS bit is a 1)
- Same as before **EXCEPT** the MS bit is negative

```
X = 11100110
 = -2^7 + 2^6 + 2^5 + 2^2 + 2^1
 = -128+64+32+4+2
```

Watch a video http://www.youtube.com/watch?v=NUASXiqazc8

Assuming 8-bit 2's complement numbers.

Operations: Arithmetic and Logical

- Recall: a data type includes *representation* and *operations*.
- We now have a good representation for signed integers, so let's look at some arithmetic operations:

 Addition
 Subtraction
 Sign Extension
- · We'll also look at overflow conditions for addition.
- Multiplication, division, etc., can be built from these basic operations.
- Logical operations are also useful:
 AND
 OR
 NOT

Addition

- · As we've discussed, 2's comp addition is just binary addition.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that sum fits in n-bit 2's comp. representation

	01101000 (104)	11110110 (-10
+	11110000 (-16)	+ 11110111 (-9)
	01011000 (88)	(1)11101101 (-19)

Assuming 8-bit 2's complement numbers.

Subtraction	
 Negate subtrahend* (2nd no.) and add 10 - 4 = 6 * minuend (c) - subtrahend (b) = difference (a) 	
 10 + (-4) = 6 We can do all subtraction using addition!!! 	
Our computer will only need an adder circuit	
Much simpler	
 First let's look at why we don't want to subtract like we do with decimal numbers http://www.youtube.com/watch?v=iBY3iPYyzUY 	
http://www.youtube.com/watch:v=jb13ir1y201	
2-13	
Subtraction	
• 104 – 16 = ?	
• 104 + (-16) =?	-
	,
01101000 (104)	
+ <u>11110000</u> (-16) 01011000 (88)	
2-14	
Subtraction	
Subtraction	-
• (-10) -(-9) = ? • (-10) + 9 = ?	
• (-10) + 9 = ?	
11110110 (-10)	
+ 00001001 (9) 11111111 (-1)	
11111111 (-1)	

Overflow

- If operands are too big, their sum cannot be represented as an *n*-bit 2's comp number
- 5 bits can represent 2⁵ or 32 unsigned integers
- Or o to 15 positive and -1 to -16 as signed integers

01110 (14) 01110 (14) +<u>01000</u> (8) 10110 (-10) **+ 01000** (8) **10110** (22)

- We have overflow in signed binary if:
- signs of both operands are the same, and
- sign of sum is different.
- Another test -- easy for hardware:
 carry into MS bit does not equal carry out

Overflow

- If operands are too big, their sum cannot be represented as an n-bit 2's comp number
- 5 bits can represent 25 or 32 unsigned integers
- Or o to 15 positive and -1 to -16 as signed integers

10111 (-8) **+ 10111** (-9) 01110 (+14)

- · We have overflow if:
 - signs of both operands are the same, and
 - sign of sum is different.
- · Easy for hardware to test

Overflow Example: 4-bit signed 1010 -6 -6 +-7 = -13 (outside the range) + 1001 -7 0110 - 6 + 0111 - 7 10000 carries 10011(4-bit)= 0011 01100 carries 01101 (4-bit) => 1101 1110 -2 -2 + 3 = 1 + 0011 - 3 0010 2 2+3=5 + 0011 11100 carries Answer = 1 valid answer 0100 carries 0101 Answer = 5 Valid answer 10001 (4-bit)=0001

Addition/Subtraction with 2's Complement

• Two's complement representation allows addition and subtraction from a single simple adder.

- Figure 3.16 A circuit for adding two 4-bit binar
- Circuit to add : S = A + B
- To subtract A B: invert B and enable carry in

Logical Operations

- Operations on logical TRUE or FALSE

- two states -- takes one bit to represent: TRUE=1, FALSE=0

Α	В	A AND B	A	В	A or B	Α	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

View *n*-bit number as a collection of *n* logical values

 operation applied to each bit independently

Examples of Logical Operations

• AND

- useful for clearing bits

• AND with zero = 0

• AND with one = no change

• OR 11000101

-21

Sign Extension

- Sometimes we want to convert a small number of bits into a larger number of bits
- If we just pad with zeroes on the left:

 4-bit
 8-bit
 0000100
 (still 4)

 1100
 (-4)
 00001100
 (12, not -4)

· Instead,

•propagate the MS bit (the sign bit):

 4-bit 0100
 8-bit 0000100
 (still 4) 11101

 1100
 (-4)
 11111100
 (still -4)

-22

Hexadecimal Notation

(not a representation)

- It is often convenient to write binary (base-2) numbers using hexadecimal (base-16) notation instead.
 - fewer digits -- four bits per hex digit
 - less error prone -- easy to corrupt long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Converting from Binary Notation to Hexadecimal Notation

- Every four bits is a hex digit.
 - start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

This video shows you how to convert binary to hex http://www.youtube.com/watch?v=W_NpD248CdE (with binary to octal thrown in)

-24

Representing Text

- American Standard Code for Information Interchange (ASCII)
 - Developed from telegraph codes, alternative to IBM's Extended Binary Coded Decimal Interchange Code (EBCDIC) in 1960s
 - Printable and non-printable (ESC, DEL, ...) characters (127)
 - Limited set of characters many character missing, especially language-specific
 - Many national "standards" developed

Text: ASCII Characters

- ASCII: Maps 128 characters to 7-bit code.

 both printable and non-printable (ESC, DEL, ...) characters
- "ASCIIbetical" order

ASCIIbetical" order

00 nul 10 dle 20 sp 30 0 40 20 50 P 60 7 70 p
01 soh 11 dct 21 1 31 1 41 A 51 Q 61 a 71 q
02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r
03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s
04 eot 14 dc4 24 \$ 34 4 4 D 54 T 64 d 74 t
05 enq 15 nak 25 % 35 5 45 E 5 U 65 F 75 u
06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v
07 bel 17 etb 27 7 37 7 47 G 57 W 67 g 77 x
09 ht 19 en 29) 39 9 49 I 59 Y 69 i 79 y
0a nl 1a sub 2a " 3a : 4a J 5a Z 6a j 7a x
0b vt 1b esc 2b + 3b ; 4b K 55 [6b k 76 k 76 c
0c np 1c fs 2c . 3c 4 c L 5c \ 6c i 7c i 7c q
0d cr 1d gs 2d - 3d = 4d M 55 | 66 n 7d 7d 7d 9c
0f si 1f us 2f / 3f ? 4f 0 5f _ 66 n 7c ~

9