
7/22/14	

1	

Computer Science 210
Computer Systems 1

Lecture Notes

Credits: Slides adapted from Gregory T. Byrd, North Carolina State University

Introduction
Lecture 2

1-2

Introduction to Computing Systems:
From Bits and Gates to C and Beyond

2nd Edition

• Yale	 N.	 Pa.	
Sanjay	 J.	 Patel	

Based	 on	 slides	 originally	 prepared	 by	 	
Gregory	 T.	 Byrd,	 North	 Carolina	 State	 University	

Chapter 1
Welcome Aboard

7/22/14	

2	

1-4

Introduction to the World of Computing

•  Computer: electronic genius?
–  NO! Electronic idiot!
–  Does exactly what we tell it to, nothing more.

•  Goal of the course:
•  You will be able to write programs in C
and understand what’s going on underneath – no
magic!

•  Approach:
•  Build understanding from the bottom up.
•  Bits ➨ Gates ➨ Processor ➨ Instructions ➨ C Programming

1-5

Two	 Recurring	 Themes	
• Abstraction

–  Productivity enhancer – don’t need to worry about details…
Can drive a car without knowing how

the internal combustion engine works.
–  …until something goes wrong!

Where’s the dipstick? What’s a spark plug?
–  Important to understand the components and

how they work together.

• Hardware vs. Software
–  It’s not either/or – both are components of a computer system.
–  Even if you specialize in one, it is important to understand

capabilities and limitations of both.

1-6

Big Idea #1: Universal Computing Device

All	 computers,	 given	 enough	 Kme	 and	 memory,	
are	 capable	 of	 compuKng	 exactly	 the	 same	 things.	

= =
Smart	 phone	

Desktop	
Supercomputer	

7/22/14	

3	

1-7

Alan Turing

1-8

7/22/14	

4	

1-10

Turing Machine
Mathematical model of a device that can perform
any computation – Alan Turing (1937)

–  ability to read/write symbols on an infinite “tape”
–  state transitions, based on current state and symbol

Every computation can be performed by some
Turing machine. (Turing’s thesis)

Tadd	 a,b	 a+b	

Turing	 machine	 that	 adds	

Tmul	
a,b	 ab	

Turing	 machine	 that	 mulKplies	

For	 more	 info	 about	 Turing	 machines,	 see	
h.p://www.wikipedia.org/wiki/Turing_machine/	

For	 more	 about	 Alan	 Turing,	 see	
h.p://www.turing.org.uk/turing/

1-‐11	

Universal Turing Machine
A machine that can implement all Turing machines
-- this is also a Turing machine!

–  inputs: data, plus a description of computation (other
TMs)

U	
a,b,c	 c(a+b)	

Universal	 Turing	 Machine	

Tadd,	 Tmul	

U	 is	 programmable	 –	 so	 is	 a	 computer!	

•  instrucKons	 are	 part	 of	 the	 input	 data	
•  a	 computer	 can	 emulate	 a	 Universal	 Turing	 Machine	

A	 computer	 is	 a	 universal	 compuKng	 device	
Video	 h.p://vimeo.com/33559758	

1-12

From Theory to Practice
In theory, computer can compute anything
that’s possible to compute

–  (Caveat) given enough memory and time

In practice, solving problems involves
computing under constraints.

–  time
•  weather forecast, next frame of animation, ...

–  cost
•  cell phone, automotive engine controller, ...

–  power
•  cell phone, handheld video game, ...

7/22/14	

5	

1-13

Problems	

Language	

InstrucKon	 Set	 Architecture	 	

Microarchitecture	

Circuits	

Devices	

Algorithms	

Big Idea #2: Transformations
Between Layers

1-14

How do we solve a problem using a computer?

A systematic sequence of transformations
between layers of abstraction

Problem	

Algorithm	

Program	

So0ware	 Design:	
choose	 algorithms	 and	 data	 structures	

Programming:	
use	 language	 to	 express	 design	

Instr	 Set	
Architecture	

Compiling/Interpre<ng:	
convert	 language	 to	 	
machine	 instrucKons	

1-15

Deeper and Deeper…
Instr	 Set	
Architecture	

Microarch	

Circuits	

Processor	 Design:	
choose	 structures	 to	 implement	 ISA	

Logic/Circuit	 Design:	
gates	 	 and	 low-‐level	 circuits	 to	
implement	 components	

Devices	

Process	 Engineering	 &	 Fabrica<on:	
develop	 and	 manufacture	
lowest-‐level	 components	

7/22/14	

6	

1-16

Descriptions of Each Level
Problem Statement

–  stated using "natural language"
–  may be ambiguous, imprecise

Algorithm
–  step-by-step procedure, guaranteed to finish
–  definiteness, effective computability, finiteness

Program
–  express the algorithm using a computer language
–  high-level language, low-level language

Instruction Set Architecture (ISA)
–  specifies the set of instructions the computer can perform
–  data types, addressing mode

1-17

Descriptions of Each Level (cont.)
Microarchitecture

– detailed organization of a processor implementation
– different implementations of a single ISA

Logic Circuits
–  combine basic operations to realize

microarchitecture
– many different ways to implement a single function

(e.g., addition)
Devices

– properties of materials, manufacturability

1-18

Many Choices at Each Level
Solve	 a	 system	 of	 equaKons	

Gaussian	 	
eliminaKon	

Jacobi	
iteraKon	

Red-‐black	 SOR	 MulKgrid	

FORTRAN	 C	 C++	 Java	

Intel	 x86	 ARM	 Nvidea	

Celeron	 Nehalem	 Atom	

Ripple-‐carry	 adder	 Carry-‐lookahead	 adder	

CMOS	 Bipolar	 GaAs	

Tradeoffs:	
cost	
performance	
power	
(etc.)	

7/22/14	

7	

1-19

Course Outline
• Bits and Bytes

–  How do we represent information using electrical signals?
• Digital Logic

–  How do we build circuits to process information?
• Processor and Instruction Set

–  How do we build a processor out of logic elements?
–  What operations (instructions) will we implement?

• Assembly Language Programming
–  How do we use processor instructions to implement algorithms?
–  How do we write modular, reusable code? (subroutines)

• I/O, Traps, and Interrupts
–  How does processor communicate with outside world?

• C Programming
–  How do we write programs in C?
–  How do we implement high-level programming constructs?

