
7/22/14	

1	

Computer Science 210
Computer Systems 1

Lecture Notes

Credits: Slides adapted from Gregory T. Byrd, North Carolina State University

Introduction
Lecture 2

1-2

Introduction to Computing Systems:
From Bits and Gates to C and Beyond

2nd Edition

• Yale	
 N.	
 Pa.	

Sanjay	
 J.	
 Patel	

Based	
 on	
 slides	
 originally	
 prepared	
 by	
 	

Gregory	
 T.	
 Byrd,	
 North	
 Carolina	
 State	
 University	

Chapter 1
Welcome Aboard

7/22/14	

2	

1-4

Introduction to the World of Computing

•  Computer: electronic genius?
–  NO! Electronic idiot!
–  Does exactly what we tell it to, nothing more.

•  Goal of the course:
•  You will be able to write programs in C
and understand what’s going on underneath – no
magic!

•  Approach:
•  Build understanding from the bottom up.
•  Bits ➨ Gates ➨ Processor ➨ Instructions ➨ C Programming

1-5

Two	
 Recurring	
 Themes	

• Abstraction

–  Productivity enhancer – don’t need to worry about details…
Can drive a car without knowing how

the internal combustion engine works.
–  …until something goes wrong!

Where’s the dipstick? What’s a spark plug?
–  Important to understand the components and

how they work together.

• Hardware vs. Software
–  It’s not either/or – both are components of a computer system.
–  Even if you specialize in one, it is important to understand

capabilities and limitations of both.

1-6

Big Idea #1: Universal Computing Device

All	
 computers,	
 given	
 enough	
 Kme	
 and	
 memory,	

are	
 capable	
 of	
 compuKng	
 exactly	
 the	
 same	
 things.	

= =
Smart	
 phone	

Desktop	

Supercomputer	

7/22/14	

3	

1-7

Alan Turing

1-8

7/22/14	

4	

1-10

Turing Machine
Mathematical model of a device that can perform
any computation – Alan Turing (1937)

–  ability to read/write symbols on an infinite “tape”
–  state transitions, based on current state and symbol

Every computation can be performed by some
Turing machine. (Turing’s thesis)

Tadd	
 a,b	
 a+b	

Turing	
 machine	
 that	
 adds	

Tmul	

a,b	
 ab	

Turing	
 machine	
 that	
 mulKplies	

For	
 more	
 info	
 about	
 Turing	
 machines,	
 see	

h.p://www.wikipedia.org/wiki/Turing_machine/	

For	
 more	
 about	
 Alan	
 Turing,	
 see	

h.p://www.turing.org.uk/turing/

1-­‐11	

Universal Turing Machine
A machine that can implement all Turing machines
-- this is also a Turing machine!

–  inputs: data, plus a description of computation (other
TMs)

U	

a,b,c	
 c(a+b)	

Universal	
 Turing	
 Machine	

Tadd,	
 Tmul	

U	
 is	
 programmable	
 –	
 so	
 is	
 a	
 computer!	

•  instrucKons	
 are	
 part	
 of	
 the	
 input	
 data	

•  a	
 computer	
 can	
 emulate	
 a	
 Universal	
 Turing	
 Machine	

A	
 computer	
 is	
 a	
 universal	
 compuKng	
 device	

Video	
 h.p://vimeo.com/33559758	

1-12

From Theory to Practice
In theory, computer can compute anything
that’s possible to compute

–  (Caveat) given enough memory and time

In practice, solving problems involves
computing under constraints.

–  time
•  weather forecast, next frame of animation, ...

–  cost
•  cell phone, automotive engine controller, ...

–  power
•  cell phone, handheld video game, ...

7/22/14	

5	

1-13

Problems	

Language	

InstrucKon	
 Set	
 Architecture	
 	

Microarchitecture	

Circuits	

Devices	

Algorithms	

Big Idea #2: Transformations
Between Layers

1-14

How do we solve a problem using a computer?

A systematic sequence of transformations
between layers of abstraction

Problem	

Algorithm	

Program	

So0ware	
 Design:	

choose	
 algorithms	
 and	
 data	
 structures	

Programming:	

use	
 language	
 to	
 express	
 design	

Instr	
 Set	

Architecture	

Compiling/Interpre<ng:	

convert	
 language	
 to	
 	

machine	
 instrucKons	

1-15

Deeper and Deeper…
Instr	
 Set	

Architecture	

Microarch	

Circuits	

Processor	
 Design:	

choose	
 structures	
 to	
 implement	
 ISA	

Logic/Circuit	
 Design:	

gates	
 	
 and	
 low-­‐level	
 circuits	
 to	

implement	
 components	

Devices	

Process	
 Engineering	
 &	
 Fabrica<on:	

develop	
 and	
 manufacture	

lowest-­‐level	
 components	

7/22/14	

6	

1-16

Descriptions of Each Level
Problem Statement

–  stated using "natural language"
–  may be ambiguous, imprecise

Algorithm
–  step-by-step procedure, guaranteed to finish
–  definiteness, effective computability, finiteness

Program
–  express the algorithm using a computer language
–  high-level language, low-level language

Instruction Set Architecture (ISA)
–  specifies the set of instructions the computer can perform
–  data types, addressing mode

1-17

Descriptions of Each Level (cont.)
Microarchitecture

– detailed organization of a processor implementation
– different implementations of a single ISA

Logic Circuits
–  combine basic operations to realize

microarchitecture
– many different ways to implement a single function

(e.g., addition)
Devices

– properties of materials, manufacturability

1-18

Many Choices at Each Level
Solve	
 a	
 system	
 of	
 equaKons	

Gaussian	
 	

eliminaKon	

Jacobi	

iteraKon	

Red-­‐black	
 SOR	
 MulKgrid	

FORTRAN	
 C	
 C++	
 Java	

Intel	
 x86	
 ARM	
 Nvidea	

Celeron	
 Nehalem	
 Atom	

Ripple-­‐carry	
 adder	
 Carry-­‐lookahead	
 adder	

CMOS	
 Bipolar	
 GaAs	

Tradeoffs:	

cost	

performance	

power	

(etc.)	

7/22/14	

7	

1-19

Course Outline
• Bits and Bytes

–  How do we represent information using electrical signals?
• Digital Logic

–  How do we build circuits to process information?
• Processor and Instruction Set

–  How do we build a processor out of logic elements?
–  What operations (instructions) will we implement?

• Assembly Language Programming
–  How do we use processor instructions to implement algorithms?
–  How do we write modular, reusable code? (subroutines)

• I/O, Traps, and Interrupts
–  How does processor communicate with outside world?

• C Programming
–  How do we write programs in C?
–  How do we implement high-level programming constructs?

